R{BLF
+f cientists

Erasmus+

The weather station project

Project description and guidelines for teachers

Contents

1 PART A: Pedagogical Considerations 3
2 PART B: Practice 12
2.1 Level 1: Pressure, temperature and humidity measurements 12
2.1.1 Assembling the circuit 12

2.1.2 Towards Arduino IDE solution 13

2.2 Level 2: Measurement of dust concentration 18
2.2.1 Assembling the circuit 0000 18

2.2.2 Towards Arduino IDE solution 19

2.3 Level 3: Visualization of the measurements 27
2.3.1 Assembling the circuit 27

2.3.2 Towards Arduino IDE solution 27

2.4 Level 4: Interpretation of collected data 37

1 PART A: Pedagogical Considerations

General approach/considerations

RoboScientists aims at engaging secondary school students in robotic artefact construc-
tion through interdisciplinary in nature projects. The set of the projects offer students
opportunities to explore different aspects of the field of Science, Technology, Engineering
Arts and Maths. Crafting/ handcrafting is a pivotal point in all the projects. Through
the crafting process (highly interwoven in the robotic artefact construction) it is likely
that the students will explore a number of engineering and design concepts, confront
challenges and consider multiple solutions in order to achieve the results that they want.

About the Weather Station project

The project aims to design and develop a weather station to measure temperature, rel-
ative humidity, air pressure, wind speed / direction, precipitation amount / intensity /
type, UV index, sun position, brightness and twilight and global radiation. For the pur-
poses of this project the weather station will be programmed to measure temperature,
humidity, Co2 emissions. For example, the weather station will be programmed to mea-
sure the temperature in different rooms of the school, reports the average temperature
in the room/class and considers whether this is according to the suggested EU recom-
mendations, measures the humidity levels indoor and outdoor, the CO2 emissions etc.
This is a very useful project as it can be applied in various teaching fields such as Mathe-
matics, Science, Chemistry, Geography for experiments, measurements and observations.
The weather station project provides the opportunity for learning to be achieved through
embodied practice.

When developing the designing and setting up the project, it is important to have
in mind the presentations provided and discussions that took place during the training
sessions. It is recommended to the educators that for a project to be delivered it is im-
portant to: employ the makeology approach, work in teams, encourage experimentation,
involves crafting and coding, apply the Engineering design process is employed, encourage
sharing, employ the STEAM approach, design and develop robotics models and artefacts,
use various tool, equipment and materials, involve students as makers.

The 1% category: 21% century and transversal skills

The 21st century and transversal skills have been outlined and described in the literature
by various researchers (e.g. Bybee & Fuchs, 2006; Ananiadou & Claro, 2009; Trilling
& Fadel, 2009; Mojika, 2010; Rotherham & Willingham, 2010; Griffin & Care, 2015)
and reports from ministries of education, policies and organizations (UNESCO 2014,
2016). These are the following: Communication, collaboration, critical thinking, prob-
lem solving, knowledge construction, creativity, innovation, self-directed learning, global
citizenship and digital literacy. In the section below, definitions, descriptions and char-
acteristics of the main 21% century and transversal skills are given.

Learn how to learn: It is a very important skill to learn how to acquire knowledge
and skills on their own and manage to construct their own knowledge and meanings.

Investigation: Investigation can be defined quite simply as a systematic fact finding
and reporting process. It is derived from the Latin word vestigere, to “track or trace,”
and encompasses a patient, step-by step inquiry. Investigation is finding facts; it is akin
to research conducted in the academic arena. In addition, it is a multi-disciplined field
of study. It encompasses law, the sciences, communications, and a host of other things.
Finally, it requires an inquisitive mind coupled with an attention to detail.

Exploration: Exploration-based learning is an active learning approach. Students’
abilities are dynamically balanced with difficulty level in the system to provide exhil-
arating and fulfilling learning experiences. The visually and intellectually compelling
storylines within the environment challenge each student to leverage their own curios-
ity and passion to solve complex problems using data and evidence, to form arguments
and reach conclusions. This approach is positioned to deliver high levels of engagement
and concentration while reducing stress and boredom for all students. Through these
experiences, students build their levels of confidence and creativity, resulting in improved
performance and sustained motivation to learn.

Reflection: Reflecting helps you to develop your skills and review their effectiveness,
rather than just carry on doing things as you have always done them. It is about ques-
tioning, in a positive way, what you do and why you do it and then deciding whether
there is a better, or more efficient, way of doing it in the future.

Problem Solving: Problem-solving skills help students determine the source of a
problem and find an effective solution. Although problem-solving is often identified as
its own separate skill, there are other related skills that contribute to this ability.

Critical Thinking: Critical thinking is not a matter of accumulating information.
A person with a good memory and who knows a lot of facts is not necessarily good at
critical thinking. A critical thinker is able to deduce consequences from what he knows,
and he knows how to make use of information to solve problems, and to seek relevant
sources of information to inform himself.

Digital literacy: Digital literacy refers to a particular set of competencies that allow
you to function and participate fully in a digital world. Students, nowadays, are generally
considered to be digital natives - able to use technology effectively and easily. They must
be able to resolve conflicts, source material ethically and interact with the wider world
in a responsible manner.

Creativity: Creativity simply means being able to come up with something new.
Therefore, creative thinking is the ability to consider something — a conflict between
employees, a data set, a group project — in a new way. The term is referring to the
act of turning new and imaginative ideas into reality involves two processes: thinking,
then producing. Finally, creativity is characterized by the ability to perceive the world
in new ways, to find hidden patterns, to make connections between seemingly unrelated

phenomena, and to generate solutions.

Innovation: Innovation skills refer to the talent of exploiting new ideas for the pur-
pose of gaining social or economic value. Innovation skills are usually a combination
of one’s ability to think creatively, problem-solving ability, as well as functional and/or
technical abilities. Fairly speaking, innovation skills are basically one’s ability to apply a
blend of knowledge, skills and attributes in a specific context.

Cooperation/ Collaboration: Cooperation is a division of labour between-group
members. It occurs when a task is divided up into individually manageable subparts,
which are subsequently constructed into a final outcome. Although this is conceptually
different to collaboration, at a fine-grained level, all collaborative tasks have a degree of
cooperation (Lai & Viering, 2012).

Communication: Communication is the art of transmitting information, thoughts
and attitudes from one person to a different one’s. It is the route of meaningful inter-
action among human beings. We learn basic communication skills by observing other
people and modelling our behaviours based on what we see.

Building knowledge: Knowledge building provides an alternative that more directly
addresses the need to educate people for a world in which knowledge creation and innova-
tion are pervasive. Knowledge building may be defined as the production and continual
improvement of ideas of value to a community, through means that increase the likeli-
hood that what the community accomplishes will be greater than the sum of individual
contributions and part of broader cultural efforts. Knowledge building, thus, goes on
throughout a knowledge society and is not limited to education.

The 2" category: General Pedagogical Skills / Objectives

The second category of skills are the General pedagogical ones. These are the skills to be
developed or in other words the general pedagogical objectives of the Curricula of var-
ious subject matters. They are mainly outlined within the Curricula of various subject
matters and specifically from subject matters such as Mathematics, Science, Technology,
Engineering, Social Sciences, Arts and Linguistics.

General skills

Information Management Skills: Students make various calculations and metrics,
make estimates and use graphs, tables, charts, and more optical media, to manage the
various information and solve the problems which are presented. Also, students commu-
nicate with different ideas, criteria, possible solutions and outcomes. This communication
takes place through sketches, graphs and representations on paper and computer, mak-
ing two-dimensional and three-dimensional models and prototypes through symbolic and
verbal representations. At the same time, they recognize, organize, analyse, compile and
evaluate data information and interpret different views and approaches.

Problem Solving Skills: The Design and Technology Study Program is particu-
larly useful for developing problem solving skills. Ploblem solving is closely related to the
development of critical, reflective and logical thinking mindset, the development of imag-
ination and creativity, problem determination and analysis, the exploration, construction
and control of products and constructions, the evaluation of processes and products.

Project Management Skills: Through cross-thematic activities proposed and im-
plemented through teamwork, pupils can develop skills in targeting, managing time and
the available resources, computation, risk-taking and dispute resolution.

Social and Interpersonal Skills: The proposed activities as well as the respective
framework offer a rich and authentic communication environment between pupils and

teachers, working in groups, respect and cooperation, etc.

Skill Category: Design

Middle School

1. Ask appropriate questions and through ideas of stature propose ideas for various
constructions and procedures.

2. They discuss ready-made technology products, referring to their form, function and
safety.

3. Analyse the factors that affect a problem, through the collection and utilization of
various information.

4. Report and develop problem-solving ideas, taking into account security, ergonomics,
aesthetics, economy, applying the design process.

5. Carry out research and evaluate sources and information about a particular product
or process.

6. Evaluate products and processes based on criteria that have been set.
7. Apply the stages of the design process.

8. Recognize and use symbols in diagrams, circuits and drawings, in applications on
paper and on PC.

High School

1. Investigate and evaluate industrial products and processes based on specifications.

2. Implement a manufacturing process according to the product they are going to
manufacture.

3. Draw up an action plan and implement the planning process stages.

Evaluate products based on specifications and needs that have been put forward
and propose modifications.

Report and document modifications and variations made during the design and
construction phases and explain the necessity of these differentiations.

Skill Category: Communication

Middle School

4.

d.

. Describe verbatim and / or design the design process for ideas to be implemented.

Use lines, shapes, and simple design methods to present their ideas.
Recognize and use symbols that recognize within diagrams, circuits and patterns.
Communicate using sketches and 3D drawings and spelling projections.

Communicate using recognized symbols.

High School

Enhance their designs by adding information through detailed three-dimensional
drawings and magnifications.

They present ideas and ways of construction through three-dimensional drawings
and spelling projections.

Skill Category: Construction

Middle School

Collect and categorize materials from simple constructions.

Prepare simple constructions with various materials, using different skills and man-
ufacturing methods.

Cut, bind and shape materials to use in simple constructions.
Mark, cut and assemble with precision various materials.

Safely use a range of tools and machines to manufacture products made up of more
than one kind of materials.

High School

2.

. Use manufacturing techniques, materials, tools and machinery in a way that appears

to be familiar with manufacturing processes, taking into account safety during
manufacture and quality assurance of the final product.

Propose and apply alternatives to implement their ideas.

Additionally, exploratory skills are promoted through the Curricula (Programs of
Study) of Secondary Education. The exploratory skills are summarized below:

Writing hypotheses that can be checked.

Designing and conducting research, determining which variables will change, what
will remain stable and what will be measured.

Selecting appropriate tools, technological equipment and suitable materials for a
construction.

Presenting and interpreting the results using a range of representations and dynamic
images, simulations and models.

Communicating results and explaining structures to classmates and other audiences
/ users, using appropriate vocabulary.

Evaluating ready-made technology products and suggesting improvements.

Presenting a design and explaining the use of the finished product.

The 3" category: The Learning Objectives
The third category includes the Learning Objectives to be achieved within various sub-
ject matters, or in other words across various disciplines. The Theremin project aims
to achieve learning objectives from the disciplines/subject matters of Music, History,
Language and Literature, Maths, Physics and 1CT :

ICT skills: programming, connecting physical and digital world through the use
and synchronization of multiple sensors.

Chemistry & Geography: CO2, temperature, air, earth, humidity, meteorology,
weather conditions, different climates, changes in the atmosphere.

Environmental Education: EU and government policies, which factors affect
the climates and the weather conditions.

Physics: electrical circuit making, understanding what a motor is and how it
works, controlling motion.

Maths: measurements, variables, observation, complete a worksheet, database.

Language and Literature: brainstorm, discuss and answer various questions
develop reports, present, i.e. How does climate/ weather is changing? How does
weather affect our daily life activities?

The process
The process to be followed from the students is the Engineering Design Process as pre-
sented in the following two diagrams.

Ask:
Identify the
need and

Comsirayints

Improve:
Redesign
as needed

Research:
the probdem

ENGINEERING
DES'GN PROCESS Imagine:

Develop
possible
solutions

Plan:
Select a
promising
sodution

Create:
Build a

prototype

Figure 1: The Engineering Design Process.

1. Define
The Problem

5. Reftect : . 7 Plan
= Redesign Sclutions

4 Test The
Model

Figure 2: The Engineering Design Process.

Sten 1
_ Find a problem gt
Sten 8

Discuss about
solution

Step T

Ty and Error

Step 4

Choose the best
idea

Construction
project

Figure 3: The Design process according the Design and Technology Curriculum (Cyprus
Ministry of Education and Culture).

Additional technical tips
For more technical details and information about the selected technologies and tools
please see O1 (technical tutorial: http://www.roboscientists.eu/outputs/output-1/).

References

Ananiadou, K. & Claro, M. (2009), "21st Century Skills and Competences for New
Millennium Learners in OECD Countries”, OECD Education Working Papers, No. 41,
OECD Publishing, Paris. DOI: http://dx.doi.org/10.1787/218525261154

Bybee, R. W., & Fuchs, B. (2006). Preparing the 21st century workforce: A new
reform in science and technology education. J. Res. Sci. Teach., 43: 349-352. doi:
10.1002/tea.20147

Griffin, P., & Care, E. (Eds) (2105). Assessment and Teaching of 21st Century Skills,
Methods and Approach. Dordrecht: Springer. DOI: 10.1007/978-94-017-9395-7

Mojica, K.D. (2010). Ordered effects of technology education units on higher-order
critical thinking skills of middle school students (Doctoral dissertation). Retrieved from:

ProQuest Dissertation and Theses database.

Rotherham, J. A.; & Willingham, D. T. (2010). "21st-Century” Skills: Not New, but
a Worthy Challenge. American Educator, 34 (1), p. 17-20.

Trilling, B., & Fadel, C. (2009). 21st Century Skills: Learning for Life in Our Times.
San Francisco, CA: Jossey-Bass.

10

http://www.roboscientists.eu/outputs/output-1/

UNESCO. (2014). ‘Teaching and Learning: Achieving quality for all’. Education for
All Global Monitoring Report, UNESCO, Paris (2014) UNESCO (2016). A Global mea-
sure of digital and ICT literacy skills. Background paper prepared for the 2016 Global
education monitoring report, Education for people and planet: creating sustainable fu-
tures for all, UNESCO, Paris (2016).

11

2 PART B: Practice

2.1 Level 1: Pressure, temperature and humidity measurements
2.1.1 Assembling the circuit

During this project, the Grove series of sensors will be used. This solution makes
connection of elements easier and fault tolerant. Otherwise making connections wire by
wire are error prone and in some circumstances may damage the sensors. Therefore,
special shield is needed. If you use Arduino Uno board, you will need Grove Base Shield.
If you use Arduino Mega 2560 board, you will need Grove Mega Shield. The second
necessary element is Grove Barometer Sensor (BME280), which consists of temperature,
pressure and humidity sensors.

First, the Grove Shield should be connected to Arduino board as is shown in Fig. 4.
If you use Arduino Mega board, the connections is similar.

fritzing

SCL

I2C I2C I2C

fritzing
Figure 4: Top figure: Arduino Uno board and Grove Base Shield separately. Bottom
figure: Grove Base Shield connected with Arduino Uno board (Grove Base Shield put on
top of Arduino Uno board).

Secondly, the BME280 sensor should be connected to the shield as is shown in Fig. 5.

12

[2C I2C

fritzing

Figure 5: The BME280 sensor connected to the Grove shield.

The connectors (sockets and plugs) have a special shape. They fit in only one way, so it
is impossible to connect them wrong.

« How temperature can be measured?
e How pressure can be measured?

o What values of temperature, pressure and humidity are optimal for people?

2.1.2 Towards Arduino IDE solution

The goal of this level is acquiring the temperature, pressure and humidity values from
BME280 sensor. The measured values should be listed in serial monitor.

You will need the special libraries for this sensor, which can be download from the
page: https://github.com/Seeed-Studio/Grove_BME280 . After downloading library,
save it to the libraries folder inside the Arduino IDE folder. Than, unzip the library and
run again the Arduino IDE.

The program was divided into following steps:

1. First the necessary libraries are added:

#include ” Seeed BME280.h ” // Including libraries
#include < Wire.h >

void setup () {
// put your setup code here, to run once:

}

13

https://github.com/Seeed-Studio/Grove_BME280

void loop () {

// put your main code here, to run repeatedly:

2. The object of BME280 class is created:

#include ”Seeed BME280.h” // Including libraries
#include <Wire.h>

BME280 bme280 ; //Create object of BME280 class

void setup () {
// put your setup code here, to run once:
}

void loop () {

// put your main code here, to run repeatedly:

3. Configure the serial monitor, which will be used to print values and comments:

#include ”Seeed BME280.h” // Including libraries
#include <Wire.h>

BME280 bme280; //Create object of BME280 class

void setup () {
// put your setup code here, to run once:

Serial.begin(9600) ; //Configure baud rate of serial port

}

void loop () {

// put your main code here, to run repeatedly:

4. The BME280 sensor is initialized inside setup function. In this function, all com-
mands are run only once. If initialization fails, init function returns false. The !
sign means negation therefore, false value will be changed to true. If 1bme280.init()
is equal to true, then Serial.println will execute and print information on serial
monitor about problem with connection:

#include ”Seeed BME280.h” // Including libraries
#include <Wire.h>

BME280 bme280; //Create object of BME280 class

void setup () {
// put your setup code here, to run once:
Serial.begin (9600); //Configure baud rate of serial port
//Initialize connection with sensor

if (! bme280.init()) Serial.println(’Error with connection!”);

14

void loop () {
// put your main code here, to run repeatedly:

}

5. Create variables, where values will be stored. The temperature and humidity are
floating variables and humidity is integer variable:

#include ”Seeed BME280.h” // Including libraries
#include <Wire.h>

float temp; //Create variables to store values
float p;
int H;

BME280 bme280; //Create object of BME280 class

void setup () {
// put your setup code here, to run once:
Serial . begin (9600); //Configure baud rate of serial port
//Initialize connection with sensor
if (!bme280.1init ()) Serial.println (" Error with connection!”);

}

void loop () {
// put your main code here, to run repeatedly:

}

6. Read variables from sensor and store in created variables:

#include ”Seeed BME280.h” // Including libraries
#include <Wire.h>

float temp; //Create variables to store values
float p;
int H;

BME280 bme280; //Create object of BME280 class

void setup () {
// put your setup code here, to run once:
Serial . begin (9600); //Configure baud rate of serial port
//Initialize connection with sensor
if (!bme280.1init ()) Serial.println (" Error with connection!”);

}

void loop () {
// put your main code here, to run repeatedly:
//Read temperature value and print to serial port

temp=bme280.get Temperature();

//Read pressure value and print to serial port

p=bme280.getPressure();

15

//Read humidity value and print to serial port

H=bme280.getHumidity();

delay (1000);
}

7. Display values in serial monitor. First line will inform about the order of appearance
of measured quantities. This line is put inside the setup function, because it should
be executed only once. Then, the read values from sensors are printed in serial
monitor inside the loop function, which repeats these actions continuously. The
print function just prints value in serial monitor. The println function prints value
in serial monitor and add new line character after it. The \t is a tabular character:

#include ”Seeed BME280.h” // Including libraries
#include <Wire.h>

float temp; //Create variables to store values
float p;
int H;

BME280 bme280; //Create object of BME280 class

void setup () {
// put your setup code here, to run once:
Serial .begin (9600); //Configure baud rate of serial port

//Initialize connection with sensor

if (!bme280.1init ()) Serial.println(”Error with connection!”);
//Print in serial port, which values will be read
Serial.println ("T (C) \t p (Pa) \t H (%)”);

}

void loop () {
// put your main code here, to run repeatedly:
//Read temperature value and print to serial port
temp=bme280 . get Temperature ();
Serial.print(temp);

Serial.print (7\t);

//Read pressure value and print to serial port
p=bme280. getPressure ();
Serial.print(p);

Serial.print (7\t);

//Read humidity value and print to serial port
H=bme280 . getHumidity ();

Serial.println(H);

delay (1000);

16

8. Delay the loop. In each measurement phase, we need to stop for a while. The
reasonable delay in our project is about 1 second, so our measurement values will
be acquired once a second. We use delay(1000) function which gets argument in
milliseconds, so we have 1 second delay. This ensures that sensor has enough time
for measurement and providing valid value to the user. Another thing is that we
don’t need much data in such measurements, especially if they don’t change quickly,
so there is no need to store the same repeating values.

#include ”Seeed BME280.h” // Including libraries
#include <Wire.h>

float temp; //Create variables to store values
float p;
int H;

BME280 bme280; //Create object of BME280 class

void setup () {
// put your setup code here, to run once:
Serial.begin (9600); //Configure baud rate of serial port

//Initialize connection with sensor
if ('bme280.init ()) Serial.println(”Error with connection!”);

//Print in serial port, which values will be read
Serial.println ("T (C) \t p (Pa) \t H (%)”);
}

void loop () {
// put your main code here, to run repeatedly:
//Read temperature value and print to serial port
temp=bme280 . get Temperature ();
Serial . print (temp);
Serial.print ("\t"7);

//Read pressure value and print to serial port
p=bme280. getPressure ();
Serial . print(p);

Serial.print }("\t7);

//Read humidity value and print to serial port
H=bme280 . getHumidity ();
Serial.println (H);

delay(1000);

17

2.2 Level 2: Measurement of dust concentration
2.2.1 Assembling the circuit

The second level is focused on reading the dust concentration based on optical sensor.
This sensor has IR LED inside, which emits IR light. If dust is present, the light bounces
off it and the light is registered by photodiodes. If intensity of light is higher, the analog
signal returned from sensor has higher voltage.

The relation between dust concentration and voltage is mostly linear (see Fig. 6).

Dust density characteristics (Example)

Output
voltage
(V)

00 L y W _1 e - | L i
0 01 02 03 04 05 06 07 08

3
Dust density (mg/m)

Figure 6: The characteristic of dust sensor. Source: http://www.theorycircuit.com/
dust-sensor-arduino-interface/ .

In this level, the optical, dust sensor GP2Y1010AUOF will be used. The sensor should
be connected to PWM output and analog input as is shown in Fig. 7.

o How is dust concentration measured by the sensor?

e What is a difference between PM2.5 and PM10?

« What do you thing is the main source of dust in the atmosphere?

18

http://www.theorycircuit.com/dust-sensor-arduino-interface/
http://www.theorycircuit.com/dust-sensor-arduino-interface/

Dust sensor

<{

eters.n|

http://www.studiopi

3U3 UCC 5U

BME280 Barometer
Sensor

fritzing

Figure 7: The dust sensor connected to the Grove shield. Red line should be connected to
5V (VCC). Black line should be connected to ground (GND). The analog output (yellow
line) (AOUT) should be connected to the analog pin. The LED input (white line) should
be connected to the PWM pin.

2.2.2 Towards Arduino IDE solution

During this level, the code from level 1 will be modified by adding commands, which will
be used to read and calculate the dust concentration.

The code was divided into following steps:
1. First, the necessary variables are created:
o dust_output - which will store read value from analog pin (ADC - Analog to
Digital Conversion),
o dust_voltage - which will store calculated voltage value returned by sensor,
o dust - which will store dust concentration,
o LED - which will store PWM pin number to which LED is connected,

e DUSTpin - which will store analog pin number to which analog output from
sensor is connected.

#include // Including libraries
#include <Wire.h>

float temp; //Create variables to store values
float p;

int H;

int dust__output;
float dust_ voltage;

19

float dust;

int LED=7; //Dust and LED pin numbers
int DUSTpin=0;

BME280 bme280; //Create object of BME280 class

void setup () {
// put your setup code here, to run once:
Serial.begin (9600); //Configure baud rate of serial port

//Initializo connection with sensor
if (!bme280.1init ()) Serial.println(”Error with connection!”);

//Print in serial port, which values will be read
Serial . println ("T (C) \t p (Pa) \t H (%)”);

}

void loop () {
// put your main code here, to run repeatedly:
//Read temperature value and print to serial port
temp=bme280 . get Temperature ();
Serial . print (temp);
Serial.print ("\t"7);

//Read pressure value and print to serial port
p=bme280. getPressure ();

Serial . print (p);

Serial.print ("\t"7);

//Read humidity value and print to serial port
H=bme280 . getHumidity ();
Serial.println (H);

delay (1000);
}

2. At the beginning, the LED diode should be configured as OUTPUT and turn off.
The returned analog signal by dust sensor has small voltage. Therefore, standard
range of voltage (0-5V) is too high and cause large inaccuracy. This reference
voltage can be changed from 5V to 1.1V by analogReference function. This will
greatly help in reducing the noise. However by this limit we will also loose the
dynamic range of sensor. Fortunately this is not a problem if we want to monitor
the relatively clean air.

#include ”Seeed BME280.h” // Including libraries
#include <Wire.h>

float temp; //Create variables to store values
float p;
int H;

int dust_output;

20

float dust_voltage;
float dust;

int LED=7; //Dust and LED pin numbers
int DUSTpin=0;

BME280 bme280; //Create object of BME280 class

void setup () {
// put your setup code here, to run once:
Serial . begin (9600); //Configure baud rate of serial port

//Initialize connection with sensor
if (!bme280.1init ()) Serial.println (" Error with connection!”);

//Change reference voltage from 5V to 1.1V
//option: INTERNAL for Arduino UNO
//option: INTERNALIV1 for Arduino Mega

analogReference(INTERNAL);
pinMode(LED,OUTPUT);
digitalWrite(LED,LOW); //Turn off LED diode

//Print in serial port, which values will be read
Serial .println (T (C) \t b (Pa) \t H (%) \t Dust (ug/m3)");
}

void loop () {
// put your main code here, to run repeatedly:
//Read temperature value and print to serial port
temp=bme280 . get Temperature ();
Serial.print (temp);
Serial.print ("\t"7);

//Read pressure value and print to serial port
p=bme280. getPressure ();

Serial . print(p);

Serial.print ("\t"7);

//Read humidity value and print to serial port
H=bme280 . getHumidity ();
Serial.println (H);

delay (1000);
}

3. Measurement of the dust concentration. First, we should turn on LED diode. Than,
wait 280 us to give a time to the sensor for light registering. After the delay, the
analog value can be read from sensor. The last step is to turn off the LED diode.

#include ”Seeed BME280.h” // Including libraries
#include <Wire.h>

float temp; //Create variables to store values

21

float p;
int H;

int dust_output;
float dust_voltage;
float dust;

int LED=7; //Dust and LED pin numbers
int DUSTpin=0;

BME280 bme280; //Create object of BME280 class

void setup () {
// put your setup code here, to run once:
Serial.begin (9600); //Configure baud rate of serial port

//Initialize connection with sensor

if (1bme280.init ()) Serial.println(”Error with connection!”);
//Change reference voltage from 5V to 1.1V

//option: INTERNAL for Arduino UNO

//option: INTERNALIV1 for Arduino Mega

analogReference (INTERNAL);

pinMode (LED,OUTPUT) ;

digitalWrite (LED,LOW); //Turn off LED diode

//Print in serial port, which values will be read
Serial . println ("T (C) \t p (Pa) \t H (%) \t Dust (ug/m3)”);

}

void loop () {
// put your main code here, to run repeatedly:
//Read temperature value and print to serial port
temp=bme280 . get Temperature ();
Serial.print (temp);
Serial.print ("\t"7);

//Read pressure value and print to serial port
p=bme280. getPressure ();
Serial.print(p);

Serial .print ("\t"7);

//Read humidity value and print to serial port
H=bme280 . getHumidity ();
Serial.println (H);

//Measure dust
digitalWrite(LED,HIGH);
delayMicroseconds(280);
dust__output=analogRead(DUSTpin);
digitalWrite(LED,LOW);

delay (1000);

22

4. In this step, the read from sensor analog value will be converted to voltage value.
The Arduino board returns analog value in range (0;1023) - 1024 possible values.
The maximum read voltage value (as set by analogReference function) is 1.1 V
(1100 mV) therefore voltage (in mV) can be calculated as:

1100
———A 1
Uaust 1024 (1)

where: A is analog value returned by Arduino board.

According to the dust sensor documentation, the divider was used. Therefore, the
final value should be multiplied by 11:

1100
—11-—A 2
Uaust 1024 2)

#include ”Seeed BME280.h” // Including libraries
#include <Wire.h>

float temp; //Create variables to store values
float p;
int H;

int dust_output;
float dust_voltage;
float dust;

int LED=7; //Dust and LED pin numbers
int DUSTpin=0;

BME280 bme280; //Create object of BME280 class

void setup () {
// put your setup code here, to run once:
Serial.begin (9600); //Configure baud rate of serial port

//Initialize connection with sensor
if ('bme280.init ()) Serial.println(”Error with connection!”);

//Change reference voltage from 5V to 1.1V
//option: INTERNAL for Arduino UNO
//option: INTERNALIV1 for Arduino Mega
analogReference (INTERNAL);

pinMode (LED,OUTPUT) ;

digitalWrite (LED,LOW); //Turn off LED diode

//Print in serial port, which values will be read
Serial . println ("T (C) \t p (Pa) \t H (%) \t Dust (ug/m3)”);

23

void loop () {
// put your main code here, to run repeatedly:
//Read temperature value and print to serial port
temp=bme280. get Temperature ();
Serial . print (temp);
Serial.print ("\t"7);

//Read pressure value and print to serial port
p=bme280. getPressure ();

Serial .print(p);

Serial.print ("\t"7);

//Read humidity value and print to serial port
H=bme280 . getHumidity ();
Serial.println (H);

//Measure dust

digitalWrite (LED,HIGH) ;
delayMicroseconds (280);
dust__output=analogRead (DUSTpin);
digitalWrite (LED,LOW);

// Calculate voltage

//Multiply voltage by 11 because voltage divider was used
dust__voltage = (1100.0/1024.0)*dust__output*11;

delay (1000);

5. According to the dust sensor documentation, the minimal voltage returned by sen-
sor is 600 mV. Therefore the dust concentration can be calculated as:

dust = 0.2 - (Ugysy — 600mV) (3)

Calculation of the dust concentration is added and value is printed in serial monitor:

#include 7Seeed BME280.h” // Including libraries
#include <Wire.h>

float temp; //Create variables to store values
float p;

int H;

int dust_output;

float dust__voltage;

float dust;

int LED=7; //Dust and LED pin numbers
int DUSTpin=0;

BME280 bme280; //Create object of BME280 class

void setup () {

24

// put your setup code here, to run once:
Serial . begin (9600);
if (!bme280.1init ()) Serial.println (" Error with connection!”);

//Change reference voltage from 5V to 1.1V
//option: INTERNAL for Arduino UNO
//option: INTERNALIV1 for Arduino Mega
analogReference (INTERNAL);

pinMode (LED,OUTPUT) ;

digitalWrite (LED,LOW); //Set 0V to LED pin

Serial . println ("T (C) \t p (Pa) \t H (%) \t Dust (ug/m3)”);

}

void loop () {
// put your main code here, to run repeatedly:
//Read temperature value and print to serial port
temp=bme280 . get Temperature ();
Serial .print (temp);
Serial.print ("\t"7);

//Read pressure value and print to serial port
p=bme280. getPressure ()/100.0;

Serial.print(p);

Serial.print ("\t"7);

//Read humidity value and print to serial port
H=bme280 . getHumidity ();

Serial.print (H);

Serial .print ("\t"7);

//Measure dust
digitalWrite (LED,HIGH)
delayMicroseconds (280);
dust__output=analogRead (DUSTpin);
digitalWrite (LED,LOW);

Y

//Calculate voltage
//Multiply voltage by 11 because voltage divider was used
dust_voltage = (1100.0/1024.0)«dust_output*11;

//Calculate dust when voltage is higher than minimal
if (dust_voltage >600) dust=(dust_voltage-600)*0.2;

else dust=0.0;

Serial.println(dust);

delay (1000);
}

This solution is simple but we can observe significant fluctuations of dust concentra-
tion value. This problem can be solved by calculating average value of dust concentration
based on e.g. 10 measurements. Additionally, because the dust measurement is long,

25

therefore it should be enclosed in separate function. In our case it is getDust() function.

Modified code is shown here:

#include ”Seeed BME280.h” // Including libraries
#include <Wire.h>

float temp; //Create variables to store values
float p;
int H;

int dust_output;
float dust_voltage;
float dust;

int LED=7; //Dust and LED pin numbers
int DUSTpin=0;

BME280 bme280; //Create object of BME280 class

void setup () {
// put your setup code here, to run once:
Serial.begin (9600);
if (!bme280.init ()) Serial.println(”Error with connection!”);
//Change reference voltage from 5V to 1.1V
//option: INTERNAL for Arduino UNO
//option: INTERNALIV1 for Arduino Mega
analogReference (INTERNAL) ;
pinMode (LED,OUTPUT) ;
digitalWrite (LED,LOW); //Set 0V to LED pin

Serial.println ("T (C) \t p (Pa) \t H (%) \t Dust (ug/m3)”);

1
float getDust ()

{

float averageDust=0.0;

for (int i=0; i<10; i++)

{
//Measure dust
digitalWrite (LED,HIGH) ;
delayMicroseconds (280);
dust__output=analogRead (DUSTpin) ;
digitalWrite (LED,LOW);

//Calculate voltage
//Multiply voltage by 11 because voltage divider was used
dust__voltage = (1100.0/1024.0)*dust_output*11;

//Calculate dust when voltage is higher than minimal

if (dust_voltage >600) averageDust+=(dust_ voltage —600)=0.2;
delay (500);

26

}

return (averageDust /10.0);

}

void loop () {
// put your main code here, to run repeatedly:
//Read temperature value and print to serial port
temp=bme280 . get Temperature ();
Serial.print (temp);
Serial.print (PE

//Read pressure value and print to serial port
p=bme280. getPressure ()/100.0;

Serial.print (p);

Serial . print(PE

//Read humidity value and print to serial port
H=bme280 . getHumidity ();

Serial.print (H);

Serial . print(PE

dust = getDust();
Serial.println(dust);

delay (1000);

2.3 Level 3: Visualization of the measurements
2.3.1 Assembling the circuit

This level is focused on visualization of the measurements. The weather station should
be portable. Therefore, the LCD RGB screen will be added to print the values. After
adding LCD screen, the weather station can be disconnected from computer. The simple
power bank can be used to power on the weather station.

The LCD RGB screen connected to Arduino board is shown in Fig. 8.

2.3.2 Towards Arduino IDE solution

During this level, the improved code from level 2 will be modified by adding commands to
display temperature, pressure, humidity and dust concentration on the LCD RGB screen.

The LCD RGB screen needs dedicated libraries, which can be downloaded from
the page: https://github.com/Seeed-Studio/Grove_LCD_RGB_Backlight . As pre-
viously, the library should be download and stored in libraries folder inside Arduino IDE
folder. Then, the library should be unzipped and Arduino IDE should be restarted.

The code was divided onto following steps:

27

https://github.com/Seeed-Studio/Grove_LCD_RGB_Backlight

Dust sensor

a??;::
4

° .
&
:
2

00 |

°
:

£

:

3u3 ucc 5V

BME280 Barometer

Sensor
fritzing
Figure 8: The LCD RGB screen connected to shield.
1. First, the dedicated library for LCD RGB screen is added:
#include // Including libraries
#include 7rgb_ledh” // Including the library for LCD
#include <Wire.h>
float temp; //Create variables to store values
float p;
int H;
int dust_output;
float dust_voltage;
float dust;
int LED=7; //Dust and LED pin numbers
int DUSTpin=0;
BME280 bme280; //Create object of BME280 class
void setup () {
// put your setup code here, to run once:
Serial . begin (9600);
if (!bme280.1init ()) Serial.println()3
//Change reference voltage from 5V to 1.1V
//option: INTERNAL for Arduino UNO
//option: INTERNALIV1 for Arduino Mega
analogReference (INTERNAL);
pinMode (LED,OUTPUT) ;
digitalWrite (LED,LJOW); //Set 0V to LED pin
Serial.println ()3

28

float getDust ()

{

float averageDust=0.0;

for (int i=0; i<10; i++)

{
//Measure dust
digitalWrite (LED,HIGH) ;
delayMicroseconds (280);
dust__output=analogRead (DUSTpin);
digitalWrite (LED,LOW);

//Calculate voltage
//Multiply voltage by 11 because voltage divider was used
dust_voltage = (1100.0/1024.0)*dust_output*11;

//Calculate dust when voltage is higher than minimal
if (dust_voltage >600) averageDust+=(dust voltage —600)*0.2;
delay (500);

}

return (averageDust /10.0);

}

void loop () {
// put your main code here, to run repeatedly:
//Read temperature value and print to serial port
temp=bme280 . get Temperature ();
Serial .print (temp);
Serial .print ("\t"7);

//Read pressure value and print to serial port
p=bme280 . getPressure ()/100.0;

Serial.print(p);

Serial.print ("\t"7);

//Read humidity value and print to serial port
H=bme280 . getHumidity ();

Serial.print (H);

Serial.print (7"\t");

dust = getDust ();
Serial.println (dust);

delay (1000);

2. Next, the object of LCD RGB class is created. Additionally, the variables which
store color numbers in RGB were defined:

e colorR - contribution of red color in range 0-255,

e colorG - contribution of green color in range 0-255,

29

e colorB - contribution of blue color in range 0-255.

#include 7Seeed BME280.h” // Including libraries
#include "rgb led.h” // Including the library for LCD
#include <Wire.h>

float temp; //Create variables to store values
float p;
int H;

int dust_output;
float dust_voltage;
float dust;

int LED=7; //Dust and LED pin numbers
int DUSTpin=0;

int colorR = 255;
int colorG = 0;

int colorB = 0;

BME280 bme280; //Create object of BME280 class
rgb_led led; //Create object of rgb_led class

void setup () {
// put your setup code here, to run once:
Serial.begin (9600);
if (!bme280.1init ()) Serial.println(”"Error with connection!”);

//Change reference voltage from 5V to 1.1V

//option: INTERNAL for Arduino UNO

//option: INTERNALIV1 for Arduino Mega

analogReference (INTERNAL) ;

pinMode (LED,OUTPUT) ;

digitalWrite (LED,LOW); //Set OV to LED pin
Serial.println ("T (C) \t p (Pa) \t H (%) \t Dust (ug/m3)”);

}

float getDust ()

{

float averageDust=0.0;

for (int i=0; i<10; i++)

{
//Measure dust
digitalWrite (LED,HIGH);
delayMicroseconds (280);
dust__output=analogRead (DUSTpin);
digitalWrite (LED,LOW);

//Calculate voltage

30

//Multiply voltage by 11 because voltage divider was used
dust_voltage = (1100.0/1024.0)*dust_output*11;

//Calculate dust when voltage is higher than minimal
if (dust_voltage >600) averageDust+=(dust_voltage —600)%0.2;
delay (500);

}

return (averageDust /10.0);

}

void loop () {
// put your main code here, to run repeatedly:
//Read temperature value and print to serial port
temp=bme280 . getTemperature ();
Serial . print (temp);
Serial.print (7\t7);

//Read pressure value and print to serial port
p=bme280 . getPressure ()/100.0;

Serial . print (p);

Serial.print ("\t"7);

//Read humidity value and print to serial port
H=bme280 . getHumidity ();

Serial.print (H);

Serial.print ("\t"7);

dust = getDust ();
Serial.println (dust);

delay (1000);

3. The LCD size and background color should be defined inside setup function:

#include ”Seeed BME280.h” // Including libraries
#include "rgb led.h” // Including the library for LCD
#include <Wire.h>

float temp; //Create variables to store values
float p;
int H;

int dust_output;
float dust_voltage;
float dust;

int LED=7; //Dust and LED pin numbers
int DUSTpin=0;

int colorR = 255;

int colorG = 0;
int colorB = 0;

31

BME280 bme280; //Create object of BME280 class
rgb_lcd led; //Create object of rgb_ lecd class

void setup () {

}

// put your setup code here, to run once:
Serial . begin (9600);
if (!bme280.1init ()) Serial.println(”Error with connection!”);

//Change reference voltage from 5V to 1.1V
//option: INTERNAL for Arduino UNO
//option: INTERNALIV1 for Arduino Mega
analogReference (INTERNAL);

pinMode (LED,OUTPUT) ;

digitalWrite (LED,LOW); //Set 0V to LED pin

//Define size of LCD and colors
led.begin(16,2);
led.setRGB(colorR, colorG, colorB);

Serial . println ("T (C) \t p (Pa) \t H (%) \t Dust (ug/m3)”);

float getDust ()

{

}

float averageDust=0.0;

for(int i=0; i<10; i++)

{
//Measure dust
digitalWrite (LED,HIGH) ;
delayMicroseconds (280);
dust__output=analogRead (DUSTpin);
digitalWrite (LED,LOW);

//Calculate voltage
//Multiply voltage by 11 because voltage divider was used
dust_voltage = (1100.0/1024.0)*dust_output=*11;

//Calculate dust when voltage is higher than minimal
if (dust_voltage >600) averageDust+=(dust_voltage —600)%0.2;
delay (500);

}

return (averageDust /10.0);

void loop () {

// put your main code here, to run repeatedly:
//Read temperature value and print to serial port
temp=bme280 . get Temperature ();

Serial . print (temp);

Serial.print ("\t"7);

32

//Read pressure value and print to serial port
p=bme280. getPressure ()/100.0;

Serial .print(p);

Serial.print (7\t7);

//Read humidity value and print to serial port
H=bme280 . getHumidity ();

Serial .print (H);

Serial.print ("\t"7);

dust = getDust ();
Serial.println (dust);

delay (1000);

4. The last step is displaying all values on the screen. First cursor should be put at
the beginning of screen by function setCursor. The first value inside function is a
row number. The second value is a column number. Next, values are displayed by
function print:

#include ”Seeed BME280.h” // Including libraries
#include "rgb led.h” // Including the library for LCD
#include <Wire.h>

float temp; //Create variables to store values
float p;
int H;

int dust_output;
float dust_voltage;
float dust;

int LED=7; //Dust and LED pin numbers
int DUSTpin=0;

int colorR = 255;
int colorG = 0;
int colorB = 0;

BME280 bme280; //Create object of BME280 class
rgb_led led; //Create object of rgb led class

void setup () {
// put your setup code here, to run once:
Serial.begin (9600);
if (!bme280.1init ()) Serial.println(”Error with connection!”);
//Change reference voltage from 5V to 1.1V
analogReference (INTERNAL);
pinMode (LED,OUTPUT) ;
digitalWrite (LED,LOW); //Set 0V to LED pin

33

}

//Define size of LCD and colors
led . begin (16 ,2);
led .setRGB(colorR, colorG, colorB);

Serial . println ("T (C) \t p (Pa) \t H (%) \t Dust (ug/m3)”);

float getDust ()

{

}

float averageDust=0.0;

for (int i=0; i<10; i++)

{
//Measure dust
digitalWrite (LED,HIGH) ;
delayMicroseconds (280);
dust__output=analogRead (DUSTpin);
digitalWrite (LED,LOW);

//Calculate voltage
//Multiply voltage by 11 because voltage divider was used
dust_voltage = (1100.0/1024.0)*dust_output=*11;

//Calculate dust when voltage is higher than minimal
if (dust_voltage >600) averageDust+=(dust_voltage —600)%0.2;
delay (500);

}

return (averageDust /10.0);

void loop () {

// put your main code here, to run repeatedly:
//Read temperature value and print to serial port
temp=bme280 . get Temperature ();

Serial . print (temp);

Serial .print ("\t"7);

//Read pressure value and print to serial port
p=bme280. getPressure ()/100.0;

Serial . print (p);

Serial.print ("\t"7);

//Read humidity value and print to serial port
H=bme280 . getHumidity ();

Serial . print (H);

Serial .print ("\t"7);

dust = getDust ();
Serial.println (dust);

led.setCursor(0,0);

34

led.print(temp);
led.print(”C 7);
led.print(dust);
led.print(7ug/m3”);
led.setCursor(0,1);
led.print(”7);
led.print(p);
led.print(”hPa ”);
led. print(

led. prmt(”‘V);

delay (1000);

The above code can be modified by adding new visually appealing functionality. The
LCD RGB screen can change color depending on the temperature. The different colors
can be stored in table. The modification is shown here:

#include ”Seeed BME280.h” // Including libraries
#include "rgb led.h” // Including the library for LCD
#include <Wire.h>

float temp; //Create variables to store values
float p;
int H;

int dust_output;
float dust_voltage;
float dust;

int LED=7; //Dust and LED pin numbers
int DUSTpin=0;

int colorR[] = {0,0,0,255,255,255};
int colorG[] = {128,255,255,255,170,0};
int colorB[] = {255,255,0,0,0,0};

BME280 bme280; //Create object of BME280 class
rgb_led led; //Create object of rgb lecd class

void setup () {
// put your setup code here, to run once:
Serial .begin (9600);
if (!bme280.init ()) Serial.println(”Error with connection!”);

//Change reference voltage from 5V to 1.1V
analogReference (INTERNAL) ;

pinMode (LED,OUTPUT) ;

digitalWrite (LED,LOW); //Set OV to LED pin

35

}

//Define size of LCD and colors
led . begin (16 ,2);

Serial . println (7T (C) \

t p (Pa) \t H (%) \t Dust (ug/m3)”);

\

float getDust ()

{

}

float averageDust=0.0;

for (int i=0; i<10; i++)

{

}

//Measure dust

digitalWrite (LED,HIGH) ;
delayMicroseconds (280);
dust__output=analogRead (DUSTpin) ;
digitalWrite (LED,LOW);

//Calculate voltage
//Multiply voltage by 11 because voltage divider was used
dust_voltage = (1100.0/1024.0)*dust_output*11;

//Calculate dust when voltage is higher than minimal
if (dust_voltage >600) averageDust+=(dust_voltage —600)*0.2;
delay (500);

return (averageDust /10.0);

void loop () {
// put your main code here, to run repeatedly:
//Read temperature value and print to serial port

temp=bme280 . getTemperature ();

Serial.print (temp);
Serial .print ("\t7);

//Read pressure value and print to serial port

p=bme280. getPressure ()/100.0;

Serial.print (p);
Serial .print ("\t7);

//Read humidity value and print to serial port

H=bme280 . getHumidity ();

Serial.print (H);
Serial.print ("\t7);

dust = getDust ();
Serial.println (dust);

// Changing background color
if (temp<0) lecd .setRGB(colorR[0], colorG[0], colorB[0]);

36

if (temp>0 && temp<5) lcd.setRGB(colorR [1], colorG[1], colorB[1]);
if (temp>5 && temp<15) lcd .setRGB(colorR [2], colorG[2], colorB[2]);
if (temp>15 && temp<25) led.setRGB(colorR[3], colorG[3], colorB[3]);
if (temp>25 && temp<30) lcd.setRGB(colorR[4], colorG[4], colorB[4]);
if (temp>30) lcd.setRGB(colorR[5], colorG[5], colorB[5]);

led . setCursor (0,0);
led . print (temp);
led . print (7C 7);
led . print (dust);
led . print ("ug/m3”);
led . setCursor (0,1);
led . print (77);

led . print (
led . print (
led . print (H);
led . print ("%

delay (1000);

2.4 Level 4: Interpretation of collected data

If you run above program and wait several minutes, you will collect much data. This
level will focus on interpretation of the data by calculation of the average values and
uncertainties of measured quantities (temperature, pressure, humidity and dust concen-
tration).

Analysis of the data consists of the following steps::

1. Calculation of the average value of chosen quantities by using equation:

1 N
N =
=1
where: z; is a single measured value, N is a number of measurements.

o Measured temperature points: 24.3, 24.9, 23.5, 24.0, 24.6,
o Sum of points is: 24.3 +24.9 + 23.5 + 24.0 4+ 24.6 = 121.3,

» The average value is: = = 121.3/5 = 24.26

2. Calculation of the uncertainty (type A) related to statistical analysis:

_ S _ [Tl
_\/N_J N(N —1) (5)

where: s, is a sample standard deviation.

Uy (type A)

37

Accuracy
Temperature | £1.25 C
Pressure +1.0 hPa
Humidity +3.0 %

Table 1: The accuracies of quantities measured by BME280 sensor.

o Measured temperature points: 24.3, 24.9, 23.5, 24.0, 24.6,
o The average value is: & = 24.26,

o SN (2 —2)2 = (24.3 — 24.26)% + (24.9 — 24.26)2 + (23.5 — 24.26)2 + (24.0 —
24.26)? 4 (24.6 — 24.26)2 = 1.17

« Statistical uncertainty (type A) is: u,(type A) = ,/% =0.24

3. Calculation of the uncertainty (type B) connected with other sources like resolu-
tion of the device, error of reading the value etc. This uncertainty is also called
systematic uncertainty:

u(type B) = 3;’ (6)

where: Az is a boundary uncertainty e.g. accuracy of the device usually read from
the sensor documentation. The accuracies of BME280 sensor are given in Table 1.

o Measured temperature points: 24.3, 24.9, 23.5, 24.0, 24.6,

The average value is: &z = 24.26,

Statistical uncertainty (type A) is: u,(type A) = 0.24

Systematic uncertainty (type B) is: u,(type B) = 1.25/y/3 = 0.72,

4. Calculation of the total uncertainty:

Uy = \/(ux(type A))? + (ux(type B))2. (7)

38

o Measured temperature points: 24.3, 24.9, 23.5, 24.0, 24.6,

« Statistical uncertainty (type A) is: u,(type A) = 0.24

 Systematic uncertainty (type B) is: u,(type B) = 0.72,

o Total uncertainty: u, = V0.242 4 0.722 = 0.76

o The measured temperature is: T' = 24.64+0.24+0.72°C' or T' = 24.6 +0.76°C..

The task is to calculate average values of temperature, pressure, humidity and dust
concentration and their total uncertainty values according with above scheme.

39

ROBOSCIENTISTS PROJECT

Motivating secondary school students towards STEM careers through robotic artefact making

Erasmus+ KA2 2018-1PL01-KA201-051129

Creators:

Part A

Nikleia Eteokleous, Raphaela Neophytou (Frederick University)
Part B

Angelika Tefelska (Warsaw University of Technology)

Declaration
This report has been prepared in the context of the ROBOSCIENTISTS project. Where
other published and unpublished source materials have been used, these have been ac-
knowledged.

Copyright
© Copyright 2018 - 2021 the Roboscientists Consortium
All rights reserved.

[erose)

This document is licensed to the public under a Creative Commons Attribution- NonCommercial-
ShareAlike 4.0 International License.

Funding Disclaimer
This project has been funded with support from the European Commission. This com-
munication reflects the views only of the author, and the Commission cannot be held
responsible for any use which may be made of the information contained therein.

40

	PART A: Pedagogical Considerations
	PART B: Practice
	Level 1: Pressure, temperature and humidity measurements
	Assembling the circuit
	Towards Arduino IDE solution

	Level 2: Measurement of dust concentration
	Assembling the circuit
	Towards Arduino IDE solution

	Level 3: Visualization of the measurements
	Assembling the circuit
	Towards Arduino IDE solution

	Level 4: Interpretation of collected data

