
Technical Tutorial for Teachers

1

Abstract

Contents

1 Arduino Board 1

2 Programming Software 1
2.1 Snap4Arduino . 1
2.2 Arduino IDE . 3

3 Electronic circuit design framework 5
3.1 TinkerCad Circuits . 5
3.2 Fritzing . 7

4 Introduction to electricity 13
4.1 Basics concepts of electricity . 13
4.2 Basic elements . 13
4.3 Connecting the elements . 21

5 The digital and analog signals 22
5.1 Digital signal . 22
5.2 PWM . 33
5.3 Analog signal . 40

6 Sensors 43
6.1 Basic sensors . 43
6.2 The advanced sensors . 57

6.2.1 Serial Peripheral Interface (SPI) 57
6.2.2 Inter-Integrated Circuit (I2C) . 62
6.2.3 UART . 67
6.2.4 1-wire . 72

7 Actuators 75
7.1 Servo . 75
7.2 Motor . 79

8 Interrupts 81

9 Wireless communication 84
9.1 Radio communication . 84
9.2 Bluetooth . 88
9.3 RFID . 90

10 Designing of the robot 94
10.1 Definition of a robot . 94
10.2 How does the robot work? . 95
10.3 How to start building a robot? . 95
10.4 The example of robot construction . 97

11 The challenges 102

LIST OF FIGURES

List of Figures

1 The most popular Arduino Boards: Uno, Leonardo, Mega 2560, LilyPad
and Nano. 2

2 The Arduino UNO pinout [3]. 3
3 The Arduino Mega 2560 pinout [4]. 4
4 The connection with the Arduino board on the Snap4Arduino software. . 5
5 The Arduino IDE window, where 1 - button to verify the code, 2 - button

to upload the code to Arduino board and 3 - button to open the Serial
Monitor. 6

6 The simple example of circuit creation done by using TinkerCad Circuit
software. 7

7 The simple example of code in TinkerCad Circuit, which simulates the
LED blinking every 200 ms. The red digits numerate the code lines. . . . 8

8 The example of electronic circuit created with Fritzing software. 9
9 The example of automatically generated schematic by using the Fritzing

software. 10
10 The Preferences window. 11
11 The example of code, which makes the LED blinking every 100 ms, wrote

in Fritzing software. 11
12 Options, which should be chosen before uploading the code to the Arduino

board. 12
13 Example of resistor and its schematic symbol. Source: [9]. 14
14 The example of resistance reading from color code. 15
15 The example of LED diode and description of its legs. Source: [10] 15
16 The example of breadboard. The black lines show, which holes are connected. 16
17 The example of wrongly placed elements on breadboard. The legs are

shorted so that the elements will not work. 16
18 The example of correctly placed elements on breadboard. 17
19 The rectifying diode and description of its legs. Source: [11] 17
20 An example of electrolytic capacitors. Source: [12]. 18
21 An example of ceramic capacitors. Source: [13]. 18
22 The example of potentiometer. 19
23 The example of servo motor construction. Source: [14, 15]. 19
24 An idea of servo motor working. Source: [16]. 20
25 The schematic idea of DC motor working. Brushes (arrows) supply power

to the commutator, which is marked in yellow. The rotor rotates clockwise. 20
26 The series connection of two resistor. 21
27 The parallel connection of two resistor. 21
28 The example of blinking LED diode for every 1s prepared in Snap4Arduino

software. 22
29 An example of traffic lights electronic circuit scheme. 24
30 An example of code for traffic lights prepared in Snap4Arduino Software. 25
31 The electronic circuit design for example 2. 28
32 Code for example 2 written in Snap4Arduino. 28
33 A code for example 2 written in Snap4Arduino, which can be easily mod-

ified for more LED diodes. 29
34 The idea of pulse width modulation. Source: [1]. 33

III

LIST OF FIGURES

35 The electronic circuit scheme of low pass filter connected to PWM output
from the Arduino UNO board. 34

36 An electronic circuit of LED diode for example 3. 35
37 A code for example 3 prepared in Snap4Arduino software. 35
38 Terminals of RGB diode. Source: [17]. 37
39 The electronic circuit for example 4. 38
40 A code for example 4 prepared in Snap4Arduino software. 38
41 An electronic circuit for example 5. 41
42 A code for example 5 prepared in Snap4Arduino software. 42
43 A code for example 5 prepared in Arduino IDE software. 42
44 The HC-SR04 ultrasonic distance sensor. Source: [18]. 43
45 The electronic circuit for example 6. 44
46 The code for example 6 written using the Arduino IDE software. 45
47 The code of example 6.2 prepared in the Arduino IDE. 47
48 The interior of the Ultrasonic library folder. 48
49 The electronic circuit for example 6 for Snap4Arduino software. 49
50 The code for example 6 written in Snap4Arduino. 49
51 The electronic circuit for example 7. 50
52 The code for example 7 written in Snap4Arduino. 52
53 The electronic circuit for example 8. 53
54 The dependence between returned voltage from sensor and UV index.

Source: [19]. 55
55 The code for example 8 written in Snap4Arduino. 56
56 The schematic connection between devices using SPI bus. Source: http:

//extronic.pl/content/60-kurs-xmega-interfejs-spi 58
57 The electronic circuit for example 9. 59
58 The example output after running code from example 9. 62
59 The I2C communication protocol. Source: [20]. 62
60 The electronic circuit for example 10. 63
61 The example output after running code from example 10. 65
62 Register function description from documentation of STM75 sensor. The

link to source of documentation is mentioned above. 66
63 Bytes description from documentation to STM75 sensor. The link to source

of documentation is mentioned above. 66
64 The example output after running code from example 11. 67
65 The UART data frame. Source: [21]. 68
66 The electronic circuit for example 12. 69
67 The GPGGA (Global Positioning System Fix Data) frame. Source: [22]. . 70
68 The 1-wire protocol . 72
69 The electronic circuit for example 13. 73
70 The example output after running code from example 13. 74
71 The example actuators. Source: [15]. 75
72 The construction of the servo. Source: [23]. 76
73 The idea of the servo operation. Source: [24]. 77
74 The electronic circuit for example 14. 77
75 The code for example 14 written in Snap4Arduino. 78
76 The electronic circuit for example 15. 79
77 The code for example 15 written in Snap4Arduino. 80
78 The electronic circuit for example 16. 83

IV

http://extronic.pl/content/60-kurs-xmega-interfejs-spi
http://extronic.pl/content/60-kurs-xmega-interfejs-spi

LIST OF FIGURES

79 The example wireless communication modules. Source: [15]. 84
80 The electronic circuit for example 17. 87
81 The electronic circuit for example 18. 88
82 The example GUI. 89
83 The electronic circuit for example 19. 93
84 The example of code block diagram. Source: [26]. 98
85 The exemplary construction of the robot. Source: ”Ideas for crafting” -

materials for sunflower project. 100
86 The example of robot’s work algorithm. 101

V

LIST OF TABLES

List of Tables

1 The table with the description of values of resistor band codes. 14
2 The basic type of variables in C++ language. 26
3 Values of duty cycles for red, green and blue LED diodes to generate the

rainbow colors. 37
4 The most popular commands for SPI bus. 59
5 The most popular commands for I2C bus. 63
6 The most popular commands for USART interface. 68
7 The most popular commands for 1-wire bus. 73
8 The most popular commands to servo control. 76
9 The pin, which can be used to detect the external interrupts. 81

VII

2 PROGRAMMING SOFTWARE

1 Arduino Board

Arduino is an open-source electronic platform, which heart is an 8-bit microcontroller
Atmel AVR. This platform was created as a simple and inexpensive tool for prototyping
for students without the electronic and programming background. By its simplicity, it
gained supporters around the world, especially in so-called makers. Due to the growing
demand Arduino began to develop by adding new versions of boards dedicated to vari-
ous purposes, e.g. Internet of Things (IoT), medical measurements, construction of 3D
printers or embedded systems. The list of Arduino board versions is long but the most
common used boards are shown in figure 1.

The Arduino UNO was the first USB Arduino board. It is a reference model for
Arduino platform. The heart of this board is the ATmega328P microcontroller. The
Arduino UNO is equipped with 14 digital input/output pins and 6 analog inputs. The 6
of 14 digital pins also can be used as PWM outputs [1].

The Arduino Leonardo board is dedicated to projects, when USB communication is
needed. Especially, this board can be connected to a computer as a mouse or keyboard.
The heart of Arduino Leonardo is the ATmega32u4 microcontroller and it is equipped
with 20 digital input/output pins, in which 7 of them can be used as PWM outputs, and
12 analog inputs [1].

The Arduino Mega 2560 is based on the ATmega 2560 microcontroller and it was
designed for more complex projects especially for the 3D printers and robotics projects.
This board is equipped with 54 inputs/outputs, in which 15 of them can work as PWM
outputs, and there are 16 analog inputs.

The Arduino LilyPad is special version dedicated to wearables projects, based on
the ATmega328 microcontroller with 9 digital inputs/outputs and 4 analog inputs. This
board can be attached to the textile by special conductive thread. The Arduino LilyPad
can be washed by hand with a mild detergent after removing the batteries and other
power supplies. Then the board should be dried according to the description of this
board [1]. The disadvantage of the Arduino LilyPad is lack of stabilized power supply,
which the user have to deliver.

The Arduino Nano is the smallest board with dimensions: 18 x 45 mm. The heart of
this board is the ATmega328 and it is equipped with 22 digital inputs/outputs, in which
6 of them can be used as PWM outputs, and there are 8 analog inputs. The size of the
board is compatible with breadboards.

The building of the Arduino UNO board is shown in figure 2 and the Arduino Mega
2560 in figure 3.

2 Programming Software

The main programming software dedicated to the Arduino Board is the Arduino inte-
grated development environment (Arduino IDE). The Arduino IDE supports the C++
language but the code must be written according to a specific scheme. Additionally,
the Arduino boards can be programmed using block-based programming languages as
Snap4Arduino or graphical programming languages as LabVIEW.

2.1 Snap4Arduino

The Snap4Arduino is modified version of the Snap! visual programming language. The
software can be downloaded from page http://snap4arduino.rocks/. The Snap4Arduino

1

http://snap4arduino.rocks/

2 PROGRAMMING SOFTWARE

Figure 1: The most popular Arduino Boards: Uno, Leonardo, Mega 2560, LilyPad and
Nano.

can be used also on the website but only on Chrome browser with special plugin, which
can be download from page http://snap4arduino.rocks/.

Before running the Snap4Arduino, the StandardFirmata should be installed on the
Arduino board. Please follow instructions below to install StandardFirmata [2]:

1. Download and install the Arduino IDE environment from page https://www.

arduino.cc.

2. Open the Arduino IDE and choose: File → Examples → Firmata → StandardFir-
mata.

3. Connect your board to an USB port in your computer.

4. In the Tools menu, select the board version and the serial port where the board is
connected.

5. Verify and upload the code.

2

http://snap4arduino.rocks/
https://www.arduino.cc
https://www.arduino.cc

2 PROGRAMMING SOFTWARE

Figure 2: The Arduino UNO pinout [3].

6. Open the Snap4Arduino.

After opening the Snap4Arduino software, choose the Arduino section on top left
corner as is shown in figure 4. Then click on Connect Arduino button.

2.2 Arduino IDE

The Arduino integrated development environment (Arduino IDE) is dedicated software
for Arduino boards, which can be download from page https://www.arduino.cc. The
Arduino IDE window is shown in figure 5. After running the software, open the Tools
section and choose board and port from the list.

All the programs always consist of two basic functions:

• setup - run only ones at the beginning of the program.

• loop - run constantly. All instructions put here will be repeated many times.

Users can extend programs with own functions but these two are mandatory.
The Arduino IDE allows to run examples, which are helpful to under-

stand how the libraries work. Such example can be opened after clicking on
File→Examples and then the user will see the list of libraries and examples
for them.

3

https://www.arduino.cc

2 PROGRAMMING SOFTWARE

Figure 3: The Arduino Mega 2560 pinout [4].

4

3 ELECTRONIC CIRCUIT DESIGN FRAMEWORK

Figure 4: The connection with the Arduino board on the Snap4Arduino software.

3 Electronic circuit design framework

The electronic circuit should be designed before it will be assembled. There are many
programs, which will assist in this process but the simplest ones are: TinkerCad Cir-
cuits and Fritzing. The first one is an online software and the second one is a desktop
application. Both programs are similar and useful for beginners.

3.1 TinkerCad Circuits

TinkerCad Circuits is a free online software, which help to design the electronic circuits
and simulate them. The software can be found on website https://www.tinkercad.

com/circuits.
An example of simple electronic circuit is shown in figure 6, in which the LED is

connected to the Arduino Uno board through a resistor. The resistor is used to limit the
LED current. The typical LED voltage drop is about 1.7 - 2.0 V (ULED) and current
should not exceed 20 mA. The Arduino boards generate the 5 V (UDO) on the digital
outputs so that resistor value should be between (220;3300) Ω according to equation 2.
In this example, the resistor has 330 Ω value.

5

https://www.tinkercad.com/circuits
https://www.tinkercad.com/circuits

3 ELECTRONIC CIRCUIT DESIGN FRAMEWORK

Figure 5: The Arduino IDE window, where 1 - button to verify the code, 2 - button to
upload the code to Arduino board and 3 - button to open the Serial Monitor.

R =
UDO − ULED

I
(1)

The all possible components are located on the right panel on the software window
like:

• General elements: resistors, capacitors, diodes or inductors.

• Input elements: buttons, potentiometers, photoresistors, IR sensors, ultrasonic dis-
tance sensors, PIR sensors, keypads etc.

• Outputs elements: LEDs, DC motors, servos, piezos, LCD displays etc.

• Power supply: batteries.

• Breadboards.

• Microcontrollers: Arduino Uno only.

• Instruments: multimeters, oscilloscopes etc.

6

3 ELECTRONIC CIRCUIT DESIGN FRAMEWORK

Figure 6: The simple example of circuit creation done by using TinkerCad Circuit soft-
ware.

The TinkerCad Circuits allows to simulate the electronic circuits by using the simple
block language. The code section will open after clicking on Code button on the right top
corner of website. In the figure 7 there is an example code block shown, which simulate
the LED blinking for every 200 ms. The LED is turn on/off by using set pin function, in
which user should fill in the pin number and the value, which will be set on the pin. The
code consists of 4 lines:

1. The LED is turn on because HIGH value is passed to set pin function. The pin
number is 7 because the LED is connected to this pin.

2. The wait function is run so that the LED will shine for 200 ms.

3. The LED is turn off because LOW value is passed to set pin function.

4. The wait function is run so that the LED will not shine for 200 ms.

An advantage of TinkerCad Circuit is simplicity and simulation option. However, this
software is an online tool, so that it is not possible to use it without internet access. In
such situation, the user can use the Fritzing software, which works similar to TinkerCad
Circuit.

3.2 Fritzing

Fritzing is an open-source software, which can be used to design electronic circuits. The
software can be found on website: http://fritzing.org/.

7

http://fritzing.org/

3 ELECTRONIC CIRCUIT DESIGN FRAMEWORK

Figure 7: The simple example of code in TinkerCad Circuit, which simulates the LED
blinking every 200 ms. The red digits numerate the code lines.

Creation of electronic circuit is the same simple as in TinkerCad Circuit. Right panel
contains part images, which user can drag and drop onto project. The list of elements is
much more wider in comparison with TinkerCad Circuits.User can use:

• the most popular Arduino boards like: UNO, Mega 2560, Leonardo, Yun, Due,
Esplora, Mini and Nano.

• the basic elements like: resistors, capacitors, inductors, transistors etc.

• input elements like: potentiometers, encoders, buttons, photocells, sensors etc.

• the output elements like: diodes, LCD displays, piezos, DC motors, servos, stepper
motors etc.

• power supply.

Additionally, a large number of elements can be downloaded from GitHub repositories.
The example of simple electronic circuit is shown in figure 8, in which the LED diode

is connected to the Arduino Mega 2560 board through a resistor.
The Fritzing allows automatic generation of electronic schematics by clicking on

Schematic button. In figure 9 there is automatically generated schematic for example
used in figure 8.

Additional feature of the Fritzing is a possibility of writing code and sending it directly
to the Arduino board. At the beginning, the user should configure the Fritzing by clicking

8

3 ELECTRONIC CIRCUIT DESIGN FRAMEWORK

Figure 8: The example of electronic circuit created with Fritzing software.

the Edit → Preferences... → Code View and choose the localization of Arduino IDE as
is shown in figure 10.

Next step is pressing the Code button. The example code of blinking LED diode every
100 ms is shown in figure 11. The code consists of two functions: setup and loop and the
lines:

1. pinMode function determines if the pin should be input or output. The first argu-
ment is the pin number. The second argument is the word INPUT or OUTPUT.
The “input” mode of pin should be selected when the signal from other elements
will be received by Arduino board e.g. event of button press, etc. The output
mode of pin should be selected when the Arduino will drive the logic value on pin,
e.g. controlling LED, servo motors, piezo etc. In our case, the pin mode should be
OUTPUT, because LED will be turned on/off when the HIGH or LOW logic
value will be driven by Arduino on pin. The LED is connected to pin number 4 so
that the line looks: pinMode(4, OUTPUT). All instructions should end by semi-
colon ”;”. The configuration of pin is done one time at the beginning of program
so that this function should be located in setup function.

2. digitalWrite function is used to set the HIGH or LOW logic value on selected
pin. The first argument is the number of pin and the second is the word HIGH or
LOW. The HIGH signal corresponds to the 5 V voltage and LOW signal to 0 V
voltage. At the beginning, the LED will be turned on, so that the HIGH state
should be set on pin number 4.

3. delay is the function, which stops running of the program for chosen amount of
time specified in ms. In this case, the program will wait 100 ms and for this time
the LED will shine.

9

3 ELECTRONIC CIRCUIT DESIGN FRAMEWORK

Figure 9: The example of automatically generated schematic by using the Fritzing soft-
ware.

10

3 ELECTRONIC CIRCUIT DESIGN FRAMEWORK

Figure 10: The Preferences window.

Figure 11: The example of code, which makes the LED blinking every 100 ms, wrote in
Fritzing software.

4. Next step is turning off the LED so that the LOW state should be set on pin
number 4.

5. The last step is waiting for 100 ms (in this case the LED will not shine).

The steps: 2 to 5 should repeat, so we could observe the effect of blinking LED. For
that, these lines are put in loop function.

Before uploading the code to the Arduino board, the type of board and port should
be chosen as it is shown in figure 12. Then, the code can be uploaded to board by clicking

11

3 ELECTRONIC CIRCUIT DESIGN FRAMEWORK

the Upload button.

Figure 12: Options, which should be chosen before uploading the code to the Arduino
board.

Summarizing, the TinkerCad Circuit and Fritzing are useful and quite similar soft-
ware for electronic circuit creation. The TinkerCad Circuit is an online software and it
advantage is a possibility to simulate the circuit before building it in reality. It helps
to verify if circuit will work according to expectations. A disadvantage of TinkerCad
Circuits is having only Arduino UNO board and a need for internet access. The Fritz-
ing is a desktop software, which is similar to TinkerCad Circuit and its advantages are
possibility to automatic electronic schematics generation and the wide list of elements.
Fritzing disadvantage is a lack of circuit simulation option but user can write the code in
Fritzing in the same way as in Arduino IDE and upload it to the real Arduino board.

12

4 INTRODUCTION TO ELECTRICITY

4 Introduction to electricity

Before starting the practical electronic circuit creation, it is important to understand the
basic concepts of electricity.

4.1 Basics concepts of electricity

The electric current is an orderly movement of electric charges, which are transferred
via charge carriers. The type of charge carries depend on type of materials. In metals,
charge carriers are electrons and in liquid and gas materials carriers can be positive ions
(cations), negative ions (anions) and electrons.

The electric field that causes the electric current in the conductor, is determined by
the potential difference called the voltage, which is expressed in Volts (V). The higher the
voltage is, the faster the charge flows (current) through the circuit. The direction of the
current flow is from a point with higher potential to a point with lower potential. Ground
(GND) describes the point with the lowest potential energy in the circuit [5, 6, 7, 8] .

The electric current is a ratio of electric charge flowing through the cross-section
of the conductor to time, expressed in Ampere (A). If the current does not change its
direction of flow and its value, the current is called direct current (DC). Current is called
alternating current when the electric current changes its direction periodically. Current
which comes from electric outlet changes direction 50-60 times per second depending on
the country.[5, 6, 7, 8] .

A resistance describes how much materials or components resist the flow of charges.
The value of resistance is defined as the ratio of voltage (U) to the current (I) (2). More
information in [5, 6, 7, 8] :

R =
U

I
(2)

4.2 Basic elements

The basic elements which are needed to design the electronic circuits are described in
this chapter.

Resistor

The first element, which was used in chapter number 3 is the resistor, which converts
part of current to heat energy. This element is used to limit the current flowing through
elements, which work for smaller current e.g. LED diode. The higher value of resistor
is used, the smaller current will flow through a circuit. This dependence is described by
Ohm law (3).

I =
U

R
(3)

The example of resistor is shown in figure 13.

13

4 INTRODUCTION TO ELECTRICITY

Figure 13: Example of resistor and its schematic symbol. Source: [9].

Color 1st digit 2nd digit 3rd digit (multiplier) 4th digit (tolerance)
black 0 0 1 -
brown 1 1 10 ±1%

red 2 2 100 ± 2%
orange 3 3 1k -
yellow 4 4 10 k -
green 5 5 100 k ±0.5%
blue 6 6 1M ±0.25%

violet 7 7 10M ±0.1%
gray 8 8 - ±0.05%

white 9 9 - -
gold - - 0.1 ±5%
silver - - 0.01 ±10%

Table 1: The table with the description of values of resistor band codes.

The value of resistance is usually shown as color code on through-hole resistors, be-
cause the resistors usually are too small to print the value on them. The value of resistance
reads from left side to the right side according with the table 1. The first and second
band represent the value. The third band is the multiplier, which is ten to the power of
color number. The results from two first bars should by multipled by this value. The last
band represents the tolerance, in which this resistor was done. The tolerance shows how
much the real resistance can be different from the nominal value.

In figure 14 an example resistor and a way of reading the code was shown. The resis-
tance value is: 15 · 1k=15 kΩ and its tolerance is 5%.

14

4 INTRODUCTION TO ELECTRICITY

Figure 14: The example of resistance reading from color code.

LED diode

The second element, which was used in chapter 3 is LED diode, which converts the
electric current to light. The LED diode is a polarized element, what means that current
should flow through the LED only in one direction. The anode should be connected to
the higher voltage and cathode to lower voltage. The anode is the longer leg of LED
diode and cathode is shorter leg (see figure 15).

Figure 15: The example of LED diode and description of its legs. Source: [10]

The typical LED diode needs voltage near 1.7 V (ULED) and current between 1 to 15
mA. The Arduino boards generate the 5 V (UDO) on the digital outputs so that resistor
should be used to limit the current. The value of resistance should be between (220;3300)
Ω according to equation 4.

R =
UDO − ULED

I
(4)

Breadboard

15

4 INTRODUCTION TO ELECTRICITY

The breadboard is a very useful device which helps to connect elements. It should
be used at the beginning of electronic circuit creation especially in a phase of circuit
behaviour checking. The example of a breadboard is shown in figure 16. The black
lines show, which holes are connected. In the middle of breadboard, the vertical holes
are connected and horizontal holes are disconnected. A large gap separates two sides
of breadboard. At the edge of breadboard, the user can see two lines: red and blue.
Sometimes the breadboard does not show color lines. The red line is used to connect the
(+) of power and all horizontal holes are connected along red line. The blue line is used
to connect the ground (GND) to it and all horizontal holes are connected along blue line.
The red and blue lines are separated from themselves.

Figure 16: The example of breadboard. The black lines show, which holes are connected.

In figure 17 wrongly placed elements are shown. All legs of elements are shorted so
that the elements will not work.

Figure 17: The example of wrongly placed elements on breadboard. The legs are
shorted so that the elements will not work.

In figure 18 there is an example of correctly placed elements on breadboard.

Rectifying diode

16

4 INTRODUCTION TO ELECTRICITY

Figure 18: The example of correctly placed elements on breadboard.

The rectifying diode is useful element, because electric current can flow only in one
direction through diode from anode to cathode. This element is used to protect sensitive
elements from flowing of current in different direction than expected. In figure 19 the
rectifying diode is shown.

Figure 19: The rectifying diode and description of its legs. Source: [11]

Capacitor

The capacitor consists of two layers, in which charge gathers, and dielectric between
them. It is used e.g. to filter power - because it does not let pass ripples of voltage
but smoothes the signal. The capacitor can be used also to resonance circuits creation,
which extract signal at the selected frequency e.g radio. Capacitors can be divided to:
pole capacitors and non-polar capacitors. The electrolytic capacitors are included in po-
lar capacitors and are shown in figure 20. Remember to connect properly electrolytic
capacitors. The non-polar capacitors are divided on ceramic (see in figure 21) and foil,
depending which material was used as dielectric. The non-polar capacitors can be con-
nected freely.

The capacity is an ability to collect the charge. The electrolytic capacitors are charac-
terized by high capacity but they are not efficient with high frequency signals due to the
dissipation factor. In some frequencies such capacitors quite contrary may even behave
as inductors. Ceramic capacitors do not dry out but they are not efficient with filtration
of the low frequencies, because they have smaller capacitance.

17

4 INTRODUCTION TO ELECTRICITY

Figure 20: An example of electrolytic capacitors. Source: [12].

Figure 21: An example of ceramic capacitors. Source: [13].

Ceramic capacitors values frequently have 3 digits written on them. The two first
digits are value in pico Farad (pF) and third digit is the multiplier (ten to the power of
this number). This is quite simillar to resistors. In figure 21 many ceramic capacitors are
shown. One of them has inscription 473, which means 47 pF · 103 = 47 pF · 1000 = 47
000 pF = 47 nF.

Potentiometer

The potentiometer is an element, which may regulate the voltage. It consists of three
legs (see figure 22), in which the middle one is output leg. When the first leg is connected
to e.g. 5 V and the last leg to 0 V (GND), the middle one will give the voltage between 0
to 5 V. This element also may be used as variable resistor if middle leg wil be connected
to one of other legs. In such case regulated resistance will be between legs on the both
ends.

Button

The button is an element, which close (shorts) the circuit when is pressed.

18

4 INTRODUCTION TO ELECTRICITY

Figure 22: The example of potentiometer.

Servo motor

Servo motors are widely used in modeling, for example, remotely controlled aircrafts,
in which the servo is responsible for ailerons movement. A servo motor is a motor with
a gear that rotates by a given angle (see figure 23), usually in the range (0;180) degrees.
Three wires are led out from the servo motor. The middle (usually red) should be
connected to the power supply (e.g. 5 V). Black is ground (GND) and the last wire
(usually in bright color: white / yellow) is a control line, which should be connected to
the pulse-width modulation (PWM) pin.

Figure 23: The example of servo motor construction. Source: [14, 15].

The controller placed in the servomechanism reads the PWM signal (see chapter no.
5.2) and on its basis determines the angle by which the gearbox should rotate (see figure
24). The PWM signal duty cycle determines the angle.

DC motor

DC motors (direct current motors), can be built in a variety of ways, but are generally
easy to understand as devices that provide rotary motion of the shaft as a result of
a repulsion of magnetic poles or an attraction (N-S). The DC motor is usually made
of a permanent magnet in a stator (non-moving part) and electromagnets in the rotor
(moving part). The electromagnet(s) in the rotor, depending on the direction of current
flow through the winding, produce on the ”outer side” either pole S or N. To ensure

19

4 INTRODUCTION TO ELECTRICITY

Figure 24: An idea of servo motor working. Source: [16].

rotary movement, the current direction must be changed in the right place. This is
provided by a commutator, an element that changes the polarity of leads to coil windings
in electromagnets as a result of rotation. The idea of DC motor working is shown in
figure 25.

N SN SS N

+

-
Figure 25: The schematic idea of DC motor working. Brushes (arrows) supply power to
the commutator, which is marked in yellow. The rotor rotates clockwise.

20

4 INTRODUCTION TO ELECTRICITY

4.3 Connecting the elements

The two elements can be connected in series or parallel e.g. this can be used with resistors
and capacitors. If you connect two resistors in series (see figure 26), the total resistance
(RT) will be summarized:

RT = R1 +R2 = 220Ω + 470Ω = 690Ω (5)

Figure 26: The series connection of two resistor.

If you connect two resistors in parallel (see figure 27), the total resistance will be
calculated as:

1

RT

=
1

R1

+
1

R2

→ RT =
R1R2

R1 +R2

=
220Ω470Ω

220Ω + 470Ω
∼= 150Ω (6)

Figure 27: The parallel connection of two resistor.

If you connect two capacitor (C1 and C2) in series, the total capacity (CT) will be
defined as:

1

CT

=
1

C1

+
1

C2

→ CT =
C1C2

C1 + C2

(7)

If you connect two capacitor (C1 and C2) in parallel, the total capacity (CT) will be
defined as:

CT = C1 + C2 (8)

21

5 THE DIGITAL AND ANALOG SIGNALS

5 The digital and analog signals

Elements can be divided into two groups: input and output elements. The first group
consists on buttons and the all sensors, which measure some parameters like tempera-
ture, pressure, humidity, intensity of light, detected sounds etc. The value of measured
parameter can be sent to the Arduino board as analog value or digital value. The second
group consists of the actuators (executive devices), piezo buzzer, diodes, LED and LCD
displays, servo and DC motors etc. These elements can be controlled by the Arduino
board by sending digital or pulse-width modulation PWM. This chapter describes the
way of sending digital and PWM signal and receiving the digital and analog signals.

All example codes are attached to the tutorial.

5.1 Digital signal

Sending adigital signal to chosen pin is always done in two steps:

1. Determining, which pin is output. You can read and write the digital signal from
pins described as Digital or PWM on the Arduino board (see figures: 2, 3).
Sometimes instead the PWM word, you can find “∼” sign.

2. Sending the HIGH or LOW value to chosen pin. The HIGH value corresponds to
5 V voltage and LOW value to 0 V.

Example 1

The blinking LED diode connected according to the figure 6 will be used as a example
of sending a digital signal. The code for Snap4Arduino of turn on/off LED diode by every
1s is shown in figure 28.

Figure 28: The example of blinking LED diode for every 1s prepared in Snap4Arduino
software.

It consists of following steps:

1. The when clicked function runs the program after clicking on it.

22

5 THE DIGITAL AND ANALOG SIGNALS

2. The block forever will repeat all instructions inside.

3. The set digital pin to function will determine, which pin is output and sent the
HIGH/LOW value to this pin. In this line, the HIGH value will be sent to the pin
number 8. So that the LED diode will start shining.

4. The wait function will block the running program for chosen number of seconds.
So that the LED diode will shine for 1s.

5. The LOW value will be sent to pin no 8, so that the LED diode will turn off.

6. The program will be blocked for 1s so that the LED diode will not shine for 1s.

Analogous code for Arduino IDE is shown below.

void setup () {
// put your setup code here , to run once :

pinMode (8 , OUTPUT) ; 1
}

void loop () {
// put your main code here , to run repea t ed ly :

d i g i t a l W r i t e (8 , HIGH) ; 2

de lay (1 0 0 0) ; 3

d i g i t a l W r i t e (8 ,LOW) ; 4

de lay (1 0 0 0) ; 5
}

The whole code consists of two functions: setup and loop. The instructions, which
are put in setup function, will run only ones. The instructions, which are put in loop
function, will be repeated many times. The code consists of following lines:

1. pinMode function determines if the pin should be input or output. The first argu-
ment is the number of pin, in which element is connected. The second argument is
the word INPUT or OUTPUT. The input pin should be chosen when the signal
from elements will be received by Arduino board e.g. button, thermometer etc. The
output pin should be chosen when the Arduino will set the signal on pin e.g. LED,
servo motors, piezo etc. In this case, the pin should be OUTPUT, because LED
will be turn on/off when the HIGH or LOW signal will be set by Arduino on pin.
The LED is connected to pin number 8 so that the line looks: pinMode(8, OUT-
PUT). All instructions should end by semicolon ”;” . The configuration of pin is
done only ones at the beginning of program so that this function should be located
in setup function.

2. digitalWrite function is used to set the HIGH or LOW signal on chosen pin. The
first argument is the number of pin and the second is the word HIGH or LOW. At
the beginning, the LED will be turned on, so that the HIGH signal should be set
on pin number 8.

23

5 THE DIGITAL AND ANALOG SIGNALS

3. delay is the function, which stops running the program for selected period of time
in ms units. In this case, the program will wait 1000 ms = 1 s and for this time the
LED will shine.

4. Next step is turning off the LED so that the LOW signal should be set on pin
number 8.

5. The last step is waiting for 1000 ms and the LED will not shine.

The step between 2-5 should repeat to see the effect of blinking LED so that these
lines are put in loop function.

Example 1.2

The previous example shows how to turn on/off one LED diode. This example is a
modification by adding additional LED diodes. Let us assume that we would like to make
traffic lights so we need three LED diodes: red, yellow and green. The electronic circuit
is shown in figure 29.

The code for Snap4Arduino is shown in figure 30 and consists of following lines:

Figure 29: An example of traffic lights electronic circuit scheme.

1. Sometimes, it is needed to use one value in many places of code. If you need to
modify it in the future, you may need to change it many times. Variables are used
to save time and make code easier to read. The variables consists of name and the
value. In this example, three variables are created: red, yellow and green. The

24

5 THE DIGITAL AND ANALOG SIGNALS

Figure 30: An example of code for traffic lights prepared in Snap4Arduino Software.

values 8, 9 and 10 are saved to variables red, yellow and green respectively. If the
red variable will be used in code, the program will read and use the value 10 from
it. If the red LED diode will be connected to other pin number, then you need only
to place new value to the red variable only once.

2. The set digital function will turn on the red LED diode by sending the HIGH value.
The pin number is forwarded as the red variable.

3. The wait function will block program for 1 s and the red LED diode will shine.

4. The red LED diode will be turned off by sending LOW value to set digital function.
The yellow LED diode will be turned on.

5. The wait function will block program for 1 s and the yellow diode will shine.

6. The yellow LED diode will be turned off and the green LED diode will be turned
on.

7. The wait function will block program for 1 s and the green diode will shine.

8. The green LED diode will be turned off and the yellow LED diode will be turned
on.

9. The wait function will block program for 1 s and the yellow diode will shine.

25

5 THE DIGITAL AND ANALOG SIGNALS

10. The green LED diode will be turned off.

Analogous code for Arduino IDE is shown below:

i n t LED red = 10 ;

i n t LED yellow = 9 ; 1
i n t LED green = 8 ;

void setup () {
// put your setup code here , to run once :
pinMode (LED red , OUTPUT) ;

pinMode (LED yellow ,OUTPUT) ; 2
pinMode (LED green ,OUTPUT) ;

}

void loop () {
// put your main code here , to run repea t ed ly :

d i g i t a l W r i t e (LED red , HIGH) ; 3

de lay (1 0 0 0) ; 4
d i g i t a l W r i t e (LED red , LOW) ;

d i g i t a l W r i t e (LED yellow , HIGH) ; 5

de lay (1 0 0 0) ; 6
d i g i t a l W r i t e (LED yellow , LOW) ;

d i g i t a l W r i t e (LED green , HIGH) ; 7

de lay (1 0 0 0) ; 8
d i g i t a l W r i t e (LED green , LOW) ;

d i g i t a l W r i t e (LED yellow , HIGH) ; 9

de lay (1 0 0 0) ; 10

d i g i t a l W r i t e (LED yellow , LOW) ; 11
}

Before we start to analyse the code, the variables will be introduced. The variables
are created to save time and make code easier to read. They consist of three elements:
type, name and value. The type determines, how value should look and how much place
in memory this value will occupy. The basic types of variables are shown in table 2. The
name is a label we can use in other places of code and value is an initial value which
name refers to.

Type Range Description Examples

int (−2147483648, 2147483647) integer -3 , 5 , 20000

unsigned int (0, 4294967295) unsigned integer 0, 50, 1000

float (1.2E − 38, 3.4E + 38) floating numbers 1.3, -6.789

double (2.2E − 308, 1.8E + 308) double precision floating number -0.987, 1.356

char (−128, 127) stores characters in ASCII code ’a’, ’f’

bool True, False boolean value True

Table 2: The basic type of variables in C++ language.

The code of traffic lights consists of following lines:

26

5 THE DIGITAL AND ANALOG SIGNALS

1. Creation of three variables, which store the pin numbers for red, yellow and green
LED diodes.

2. Determining, which pin should be OUTPUT using the pinMode function.

3. Writing the HIGH value to pin connected with the red LED diode by using digi-
talWrite function. The red LED diode will start shinning.

4. Block the program running for 1000 ms by using delay function. The red LED
diode will shine.

5. Turn off the red LED diode by sending LOW value to the pin. The yellow LED
diode will be turned on.

6. Block the program running for 1000 ms by using delay function. The yellow LED
diode will shine.

7. Turn off the yellow LED diode by sending LOW value to the pin. The green LED
diode will be turned on.

8. Block the program running for 1000 ms by using delay function. The green LED
diode will shine.

9. Turn off the green LED diode by sending LOW value to the pin. The yellow LED
diode will be turned on.

10. Block the program running for 1000 ms by using delay function. The yellow LED
diode will shine.

11. Turn off the yellow LED diode by sending LOW value to the pin.

Example 2

Previous examples show how to send the digital signals to the pins. This example
will show how read digital signal from pin. For this purpose the electronic circuit from
example 1.2 will be modified by adding the button (see figure 31). The capacitor is used
to eliminate contact vibrations and randomly generated spikes. There is also a resistor
10 kΩ which is connected from button to GND. This is so-called pull-down resistor,
which enforces the LOW state on input pin when button is not pressed. When button
is pressed 5 V (HIGH state) is connected through button to input pin. In this situation
small current will flow through resistor to GND.

The goal is to turn on the LEDs after pushing button. The code for Snap4Arduino is
shown in figure 32 and consists of following lines:

1. Initialization of variables.

27

5 THE DIGITAL AND ANALOG SIGNALS

Figure 31: The electronic circuit design for example 2.

Figure 32: Code for example 2 written in Snap4Arduino.

28

5 THE DIGITAL AND ANALOG SIGNALS

2. A block if...else is used, which means that if condition after the word if is met,
instructions which are put inside (lines with number 3) will be executed. If the
condition will not be met, these lines (3) will not execute. In this case, if the
button is pressed, the if block will execute instructions inside it.

3. LEDs will be turned on if the button was pressed.

4. A part of block else will run, if the condition will not be met.

5. LEDs will be turned off if the button was not pressed.

In this example the set digital pin function is repeated. If you connect more than
three LED diodes, the code will start to grow. An example of code, which can be easily
modified for more LED diodes without growing the code, is shown in figure 33.

Figure 33: A code for example 2 written in Snap4Arduino, which can be easily modified
for more LED diodes.

This code consists of following lines:

1. Previously, the variables were created for single values. Sometimes we would like
to store more than one number. For this purpose a list can be used. The list name
is LEDs and has following values: 8, 9 and 10. The first element of list is 8, the
second element of list is 9 and the third element is 10.

2. If user has pushed the button, instructions inside the block would be executed.

29

5 THE DIGITAL AND ANALOG SIGNALS

3. The repeat block will repeat the instructions put inside the chosen amount of times.
In this case the instruction will be repeated 3 times.

4. The set digital pin function is used to turn on LED. Normally, as the first argument
of this function, a number of chosen pin is used. Actually, all pins are stored in a
list. For first iteration of repeat block we would like to set number 8 to set digital
pin function. For the second iteration we would like to use number 9. For the third
iteration we would like to use number 10. So that we can use additional variable
called i to iterate through the list and turn on all LED diodes. The item ... of ...
function allows to choose one value from the list. The i variable will have value
equal to 1 at the beginning of repeat block, so that the first LED diode connected
to pin number 8 will be turned on.

5. This line checks if i variable is less than 3. The list has only 3 elements, so that if
the i variable will have value greater than 3, the program will return an error (you
cannot iterate over non-existant elements of the list).

6. The change ... by ... function allows to increase or decrease the value of variable. In
this case the i variable will increase the value by 1 so that during the next iteration
of repeat block, the second LED diode will be turned on by set digital pin function.

7. This line sets i variable to initial value (1).

8. This line will execute repeat block for three times to turn off the LEDs.

9. The set digital pin function will turn off the LED diode.

10. This line checks if i variable is less than 3.

11. The i variable will increase the value by 1 so that during the next iteration of repeat
block, the second LED diode will be turned off by set digital pin function.

12. This line sets i variable to initial value (1).

Analogous code for Arduino IDE is shown below:

i n t LED red = 10 ;
i n t LED yellow = 9 ;
i n t LED green = 8 ;
i n t button = 11 ;

void setup () {
// put your setup code here , to run once :
pinMode (LED red , OUTPUT) ;
pinMode (LED yellow ,OUTPUT) ;
pinMode (LED green ,OUTPUT) ;

pinMode (button , INPUT) ; 1
}

void loop () {
// put your main code here , to run repea t ed ly :

30

5 THE DIGITAL AND ANALOG SIGNALS

i f (d i g i t a lRead (button)) 2
{

d i g i t a l W r i t e (LED red , HIGH) ;

d i g i t a l W r i t e (LED yellow , HIGH) ; 3
d i g i t a l W r i t e (LED green ,HIGH) ;

}
e l s e 4
{

d i g i t a l W r i t e (LED red , LOW) ;

d i g i t a l W r i t e (LED yellow , LOW) ; 5
d i g i t a l W r i t e (LED green , LOW) ;

}
}

1. Button sends HIGH signal to the Arduino board, when pressed. So that the button
is the INPUT element. The pinMode function determines that the pin number 11
connected to the button will be INPUT.

2. Block if...else is used, which means that if condition after the word if is met, the
instructions put inside (lines with number 3) will be executed. If the condition will
not be met, these lines (3) will not execute. In this case, if the button is pressed,
the if block will execute instructions inside it.

3. LEDs will be turned on if the button was pressed.

4. Part of block else will run, if the condition will not be met.

5. LEDs will be turned off if the button was not pressed.

In this example the digitalWrite function is repeated. If you connect more than three
LED diodes, the code will start to grow. An example of code, which can be easily modified
for more LED diodes without growing the code, is shown below:

i n t LEDs [] = {10 ,9 , 8} ; 1
i n t button = 11 ;

void setup () {
// put your setup code here , to run once :

f o r (unsigned i n t i =0; i <3; i++) 2
{

pinMode (LEDs [i] , OUTPUT) ; 3
}
pinMode (button , INPUT) ;

}

void loop () {
// put your main code here , to run repea t ed ly :
i f (d i g i t a lRead (button))
{

f o r (unsigned i n t i =0; i <3; i++) 4
{

31

5 THE DIGITAL AND ANALOG SIGNALS

d i g i t a l W r i t e (LEDs [i] , HIGH) ; 5
}

}
e l s e
{

f o r (unsigned i n t i =0; i <3; i++) 6
{

d i g i t a l W r i t e (LEDs [i] , LOW) ; 7
}

}
}

This code consists of following lines:

1. Pin numbers are stored in table. The table is a variable, which consists of a type,
a name and values. An advantage of the table is that you can store more than one
value inside of it. In this example, the table type is int and table is named LEDs.
Values of the table are 10, 9, 8 and are put in {} brackets. You can easily iterate the
table to receive one chosen value. If you would like to read first element of table,
the code will look like: LEDs[0]. The number in brackets (called index) informs,
which element from table will be received. The index starts from 0 so that the first
element will have index 0. The second element you can read by writing LEDs[1]
and the third by LEDs[2].

2. The pinMode function should be executed three times with three values from LEDs
table separately. The for loop allows to repeat the instructions until the condition
will be met. The for loop is used according to the scheme:

for (creating variables ; loop termination condition ; changing the value of
variables)

In this example, the for loop should run three times to initialize three different pins
as OUTPUT. The index of table will be changed by variable called i starting from
0. The second argument of for loop says that the loop will run as long as i variable
will be smaller than 3. The third argument says that after one execution of loop,
the i variable will be increased by 1.

3. The pinMode function is used to determine, which pins will be OUTPUT. The
number of pin is transferred as chosen element from table. During the first iteration
of for loop, the i variable will be equal to 0 and the LEDs[i]=LEDs[0]=10. After
one iteration, the i variable will increase by 1. During second iteration, the i
variable will be equal to 1 and the LEDs[i]=LEDs[1]=9. Similarly, during the third
iteration the i variable will be equal to 2 and the LEDs[i]=LEDs[2]=8.

4. The for loop should run three times to turn on three LED diodes separately.

5. The digitalWrite function is used to send HIGH value to pin and turn on the LED
diode.

32

5 THE DIGITAL AND ANALOG SIGNALS

6. The for loop should run three times to turn off three LED diodes separately.

7. The digitalWrite function is used to send LOW value to pin and turn off the LED
diode.

5.2 PWM

Pulse Width Modulation (PWM) is a technique to generate the digital square wave, in
which the HIGH value is set for specified time. In figure 34 an idea of PWM generation
is presented, in which the green lines depict a PWM period which equals to about 2 ms
for Arduino analogWrite function.

Figure 34: The idea of pulse width modulation. Source: [1].

You can generate the PWM signal from pins described as PWM on the Arduino
board (see figures: 2, 3). Sometimes instead the PWM word, you can find “∼” sign.

The function, which is used to control the width of signal is analogWrite(pin,
width) for Arduino IDE, which needs the width as the second argument. The width is
determined as the value between 0-255. The maximum value 255 represents the 100%
duty cycle so that the HIGH state will last whole period. The value 127 corresponds to
the 50% of duty cycle, so that the HIGH and LOW states will be generated alternately
for half time of period (about 1 ms). The 64 value corresponds to 25% duty cycle so that
the HIGH state will last 25% of time (about 0.5ms) and the LOW signal will last 75%
of time (about 1.5 ms).

33

5 THE DIGITAL AND ANALOG SIGNALS

The PWM technique is commonly used to change brightness of LED diodes, to change
the angle of servo motors etc. The PWM signal can be also used to generate analog signal
from the Arduino board. Normally, the Arduino board allows only to read analog signal.
But you can use the PWM signal and low pass filter, which converts the PWM signal to
constant voltage proportionally to the percentage of the PWM duty cycle. The scheme
of the low pass filter is shown in figure 35. Simple low pass filter can be assembled using
100 nF capacitor and 3.9 kΩ resistor.

Figure 35: The electronic circuit scheme of low pass filter connected to PWM output
from the Arduino UNO board.

Example 3

This example shows how to simulate the brightness of LED diode. The human eyes
work slowly so that we cannot notice the changing between HIGH and LOW signal
during generation of PWM signal. When the duty cycle is smaller, the human eyes see
that LED diode shines at lower intensity. When duty cycle is higher the LED diode will
shine with higer intensity. In fact, the brightness of LED diode does not change but the
effect is connected only with restrictions of speed of image registration by human eye.
During this example, we will change the LED diode brighteness by changing the PWM
duty cycle from 0 to 100% and than from 100% to 0%. The electronic circuit is shown
in figure 36.

The code for Snap4Arduino is shown on figure 37 and consists on line:

1. A LED variable is created and its value is set to a pin number, where LED diode
is connected. This pin should be PWM type.

2. i variable is created and its value of is set to 0.

34

5 THE DIGITAL AND ANALOG SIGNALS

Figure 36: An electronic circuit of LED diode for example 3.

Figure 37: A code for example 3 prepared in Snap4Arduino software.

35

5 THE DIGITAL AND ANALOG SIGNALS

3. Acounterpart of analogWrite function is set pin ... to value ... function in Snap4Arduino.
The PWM signal should be generated from 0 to 255 to see brightening of LED diode.
So that repeat block is used to repeat the set pin ... to value ... function 255 times.

4. The set pin ... to value ... function is used to change the width of signal. The value
of width is stored in i variable.

5. The i variable is changed by 1 after one repeat block iteration.

6. The PWM signal should be generated from 255 to 0 to see darkening of LED diode.
So that repeat block is used to repeat the set pin ... to value ... function 255 times.
The value of width is stored in i variable.

7. The i variable is changed by -1 after one repeat block iteration.

Analogous code for Arduino IDE is shown below and consists of following lines:

i n t LED=8;

void setup () {
// put your setup code here , to run once :

pinMode (8 ,OUTPUT) ; 1
}

void loop () {
// put your main code here , to run repea t ed ly :

f o r (unsigned i n t i =0; i <256; i++) 2
{

analogWrite (LED, i) ; 3
de lay (2 0) ;

}
f o r (unsigned i n t i =255; i >0; i−−) 4
{

analogWrite (LED, i) ; 5
de lay (2 0) ;

}
}

1. First, the pin number 8, which is used to connect LED diode, is initialized as
OUTPUT. The pin number 8 can work as PWM pin o the Arduino Mega 2560
board.

2. Duty cycle of PWM signal should be changed from 0 to 255 to see brightening of
LED diode. So that the for loop is used and will increase the i variable value by 1
after every iteration of loop as soon as i will be smaller than 256.

3. The analogWrite function is used to generate the PWM signal and the i variable
is used to change the duty cycle from 0 to 255.

36

5 THE DIGITAL AND ANALOG SIGNALS

4. Duty cycle of PWM signal should be changed from 255 to 0 to see darkening of
LED diode. So that the for loop is used and will decrease the i variable value of 1
after every iteration of loop as soon as i will be greater than 0. The initial value of
i variable is equal to 255.

5. The analogWrite function is used to generate the PWM signal and the i variable
is used to change the duty cycle from 255 to 0.

Example 4

PWM signal is commonly used to change the color of RGB diode, which terminals
are described in figure 38. Following program will generate the colors from rainbow: red,
orange, yellow, green, blue and violet, which will change after 1 s. The electronic circuit
is shown in figure 39.

Figure 38: Terminals of RGB diode. Source: [17].

Colors of rainbow with the duty cycles are shown in table 3.

Color Red Green Blue

red 255 0 0

orange 255 150 0

yellow 255 255 0

green 0 255 0

blue 0 0 255

violet 150 0 255

Table 3: Values of duty cycles for red, green and blue LED diodes to generate the rainbow
colors.

37

5 THE DIGITAL AND ANALOG SIGNALS

Figure 39: The electronic circuit for example 4.

A code for changing the RGB diode colors is shown in figure 40 and consists of
following lines:

Figure 40: A code for example 4 prepared in Snap4Arduino software.

38

5 THE DIGITAL AND ANALOG SIGNALS

1. The variables of duty cycles for all colors for red, green and blue LED diodes are
created as lists separately.

2. Rainbow is constructed with 6 colors: red, orange, yellow, green, blue and violet so
that the set pin ... to value ... function should be repeated 6 times by using repeat
block.

3. The duty cycles are set separately for red, green and blue diodes by using set pin
... to value The width is transferred as element from list by using an index i
variable.

4. After one iteration of repeat block, the i variable is increased by 1.

Analogous code for Arduino IDE is shown below and consists of following lines:

i n t LED red=10;
i n t LED green=9;
i n t LED blue=8;

i n t r e d v a l u e s []={255 , 255 , 255 , 0 , 0 , 150} ;

i n t g r e e n v a lu e s []={0 , 150 , 255 , 255 , 0 , 0} ; 1
i n t b l u e v a l u e s []={0 , 0 , 0 , 0 , 255 , 255} ;

void setup () {
// put your setup code here , to run once :
pinMode (LED red ,OUTPUT) ;

pinMode (LED green ,OUTPUT) ; 2
pinMode (LED blue ,OUTPUT) ;

}

void loop () {
// put your main code here , to run repea t ed ly :

f o r (unsigned i n t i =0; i <6; i++) 3
{

analogWrite (LED red , r e d v a l u e s [i]) ;

analogWrite (LED green , g r e e n v a lu e s [i]) ; 4
analogWrite (LED blue , b l u e v a l u e s [i]) ;
de lay (1 0 0 0) ;

}
}

1. The variables of duty cycles for all colors for red, green and blue LED diodes are
created as a table separately.

2. Pins connected to the red, green and blue LED diodes are initialized as OUTPUT.

3. Rainbow is constructed with 6 colors: red, orange, yellow, green, blue and violet so
that the analogWrite function should be repeated 6 times by using for loop. An i
variable is created as index, which will be used to chose value of duty cycles from
table for chosen color.

39

5 THE DIGITAL AND ANALOG SIGNALS

4. The analogWrite function is used to change the duty cycle for the red, green and
blue LED diodes separately.

5.3 Analog signal

The Arduino board allows to read the analog signal, which is returned by many sensors.
Analog pins are described as Analog IN on the Arduino board (see figures: 2, 3). A
function, which is used to read the analog value from chosen pin is analogRead(pin)
in Arduino IDE. The maximum measured voltage by Arduino pins is 5V, the minimum
voltage is 0V. The analogRead function returns value between 0 to 1023. So that the
read value can be transferred to the voltage (Vread) according to equation:

Vread =
5.0

1024
· value (9)

The Arduino IDE provides useful function, which recalculate the value from one range
to the another. This function is called map(value, minimum value from old range,
maximum value from old range, minimum value from new range, maximum
value from new range). So that the read value from analogRead function can be trans-
ferred to voltage by line:

int value = analogRead(pin);
double voltage = map(value, 0, 1023, 0, 5);

Example 5

This example will be used to read the temperature from LM35 sensor, connected
according to the figure 41.

Read value should be displayed somehow. It can be done in many ways e.g. using
the LCD display or Serial Monitor. The Serial is a communication interface, which
consists of two lines: Rx (to receive data) and Tx (to transmit data). Transmission by
Serial is asynchronous. Both communicating devices, which one receive data and second
transmits data, must have the same baud-rate, which specifies the number of transmitted
bits per second. In this example, the read value, calculated voltage and temperature will
be displayed in Serial Monitor for Arduino IDE. Unfortunately, the Serial monitor is
not available for Snap4Arduino, but the actual values of variables are display in the right
corner of this software.

40

5 THE DIGITAL AND ANALOG SIGNALS

Figure 41: An electronic circuit for example 5.

A code for example 5 for Snap4Arduino is shown in figure 42 and consists of following
lines:

1. An analog value from temperature sensor is read by function analog reading and
saved to value variable.

2. A voltage is calculated according to equation 9.

3. According to documentation of LM35 sensor, the temperature is changing by 10mV/oC
so that the voltage should be multiplied by 100 to receive temperature.

Analogous code for Arduino IDE is shown in figure 43 and consists of following lines:

1. A pin, to which the LM35 is connected, is initialized as INPUT.

2. An analog value is read by analogRead function and saved to value variable.

3. A voltage is calculated according to equation 9.

4. According to documentation of LM35 sensor, the temperature is changing by 10mV/oC
so that the voltage should be multiplied by 100 to receive temperature.

5. Function print called on the object Serial is used to display the text or value to
Serial Monitor, which is shown on the right side of figure 43.

41

5 THE DIGITAL AND ANALOG SIGNALS

Figure 42: A code for example 5 prepared in Snap4Arduino software.

Figure 43: A code for example 5 prepared in Arduino IDE software.

6. Function println called on the object Serial is used to display the inscription or
value to Serial Monitor with addition of new line tarminating character. The effect
will be the same as “pushing the Enter key”.

42

6 SENSORS

6 Sensors

Sensors are used to register the measured quantity as temperature, humidity, pressure,
distance, etc. The measured value can by read by the Arduino board as the analog
signals, time between two signals or digital values using data communication interfaces
(bus). Depending on the type of sensor, the different way of reading measured data needs
to be applied. The most popular sensors will be described with examples in this chapter.

6.1 Basic sensors

Example 6

The first example of sensor readout will be based on ultrasonic distance sensor HC-
SR04, which is shown in Figure 44. This sensor generates the ultrasonic wave, which
reflects from the objects and come back to the sensor. Time between generating and
registering the wave front is proportional to the distance and depends on the speed of
propagation of a given wave in the medium e.g. air. In the similar way, the bats assess
the distance.

This example can be used as a parking sensor in car, which measures the distance
from objects and alarm the driver by a buzzer sound.

Figure 44: The HC-SR04 ultrasonic distance sensor. Source: [18].

The electronic circuit is shown in Figure 45.
The ultrasonic sensor usage can be programmed with a ready library from GitHub

repository or by writing own function, which is much more didactic and showing the idea
of a distance measurement by using the ultrasonic waves. The first version of code is
prepared for Arduino IDE and shown in Figure 46.

The code consists of the following lines:

43

6 SENSORS

Figure 45: The electronic circuit for example 6.

1. Creating the variables, which determine used pins by numbers.

2. The two variables: Time and distance are created and their type is long. The Long
type is extended version of int type, which value can be in range of: (-2 147 483
648, 2 147 483 647).

3. The ultrasonic sensor has two main legs called: trigger and echo. The leg trigger
is used to release the wave generation and the echo is used to listen for the arrival
of the wave. So that the trigger pin should be OUTPUT and echo pin should be
INPUT. The buzzer, which is also used to generate sound, should be OUTPUT.

4. Releasing the wave generation is done after sending the HIGH signal level to the
trigger pin for 10 µs. Before it, the LOW signal level should occurs for 2µs. This
line set the LOW signal level to the trigger pin.

5. The delayMicroseconds function is used to generate the delay in µs. This line blocks
running the program for 2µs so that the LOW signal on the trigger pin will last.

6. The HIGH signal level is set on the trigger pin.

44

6 SENSORS

Figure 46: The code for example 6 written using the Arduino IDE software.

7. The program will be stopped for 10 µs and the HIGH signal level on the trigger
pin will last.

8. The LOW signal level is set on the trigger pin to finish the releasing of the ultrasonic
wave.

9. The pulseIn function measures the time duration of the chosen signal: LOW or
HIGH in µs. According to the figure 44, the distance is proportional to the duration
of HIGH signal on the echo pin.

10. The time duration between two HIGH signals is equal to the time needed to make

45

6 SENSORS

the wave travel to the object and back, that is, it traveled twice the distance. The
distance can be calculated using the equation from documentation to HC-SR04:

d(cm) =
t(µs)

58
(10)

or it can be calculated by using equation for the velocity:

v =
2d

t
→ d = v · t

2
= 0.034

µs

cm
· t(µs)

2
≈ t(µs)

58
(11)

11. The value of distance is displayed in the Serial Monitor.

12. The piezo buzzer sound is adjustable by using the PWM signal. At the beginning
the width of signal is set to 200.

13. This line blocks execution of the program for 100 ms and the piezo buzzer will
generate the sound. You can modify this value for your needs.

14. This line turn off the piezo buzzer.

15. The delay between generating sound and silence depends on the distance. If distance
is small the sound will be generated with higher frequency.

The lines between 4-10 will be repeated if you use another ultrasonic distance sensor.
So that the code will grow. When you will use some parts of code many times, the good
practise is to create the function. The function consists of:

type name(type argument)
{
code inside;
}

Example 6.2

The modified example 6 with own function usage is shown in Figure 47. The setup
function is exactly the same as in example 6. The own function, which returns the value
of distance from ultrasonic sensor was added after setup function. It consists of the
following lines:

1. The declaration of function. First part is type of data, which function will return.
The function should return distance, which is long value. Second part is a name of
the function. The last part is located in brackets and it is declaration of variables,
which user should transfer to function and temporary names of variables, which
will be used inside the function.

2. The declaration of variable Time was moved to function body because this variable
will be used only in this function.

3. This part is copied from example 6 (lines 4-10)

46

6 SENSORS

4. The word return determines what the function will return. For ultrasonic sensor,
the distance calculated as time divided by 58 should be returned.

5. The line 5 shows function calling.

Figure 47: The code of example 6.2 prepared in the Arduino IDE.

The Snap4Arduino has only very basic functions, so that it is impossible (or very hard
depending on the point of view - however not intended for a novice user) to write own

47

6 SENSORS

functions to measure the distance from ultrasonic sensor. The special libraries with this
function can be easily downloaded from GitHub repository:

1. You can find many kinds of these libraries in GitHub repositories. One of them is:
https://github.com/mdcanham/Snap4Arduino-Firmata/tree/master/Ultrasound_

HC_SR04Firmata.

2. After downloading the repository, extract it to the libraries directory located inside
the Arduino IDE installed directory.

3. Then unpack the contents of the archive. After unpacking, you should have direc-
tories and files inside the created folder, such as in Figure 48.

4. Open the Ultrasound HC SR04Firmata.ino in Arduino IDE software. Depending
on the libraries the Firmata file can be named a little different.

5. Compile and upload to Arduino board Firmata firmware.

6. Open the Snap4Arduino software.

7. Drag and drop the Ultrasound HC SR04 blocks.xml file to Snap4Arduino software.

Figure 48: The interior of the Ultrasonic library folder.

The libraries for ultrasonic sensors forces user to connect the sensor to the specific
pins. For this purpose, the electronic circuit was modified and shown in Figure 49.

The code for demonstration of parking sensor working using the Snap4Arduino is
shown in Figure 50.

The code consists of following lines:

1. The buzzer variable was created and the pin number, to which buzzer is connected,
is transferred to variable.

2. The ultrasound distance reading function returns the distance value. This value is
transferred to created variable called distance.

3. The piezo buzzer sound is adjustable by using the PWM signal. At the beginning
the width of signal is set to 200.

4. This line blocks program execution for 0.1 s and the piezo buzzer generates the
sound.

5. This line turns off the piezo buzzer.

48

https://github.com/mdcanham/Snap4Arduino-Firmata/tree/master/Ultrasound_HC_SR04Firmata
https://github.com/mdcanham/Snap4Arduino-Firmata/tree/master/Ultrasound_HC_SR04Firmata

6 SENSORS

Figure 49: The electronic circuit for example 6 for Snap4Arduino software.

Figure 50: The code for example 6 written in Snap4Arduino.

49

6 SENSORS

6. Delay between sound generation and silence depends on the distance. If distance is
small the sound will be generated with higher frequency.

Example 7

The sound sensor is an another popular sensor used in many projects. This sensor is
easy to use because it returns just digital state. During this exercise, the sound sensor
V2 is used, which returns 0 when sound is detected and 1 when sound is not detected.
When sound is detected, the LED should light up. The electronic circuit scheme is shown
in Figure 51.

Figure 51: The electronic circuit for example 7.

The code for Arduino IDE is shown below and consists of the following lines:

i n t soundSensor =8;
i n t LED=9;
i n t sound=0;
boolean LEDstatus=f a l s e ;

void setup () {
// put your setup code here , to run once :

pinMode (soundSensor , INPUT) ; 1
pinMode (LED,OUTPUT) ;

}

50

6 SENSORS

void loop () {
// put your main code here , to run repea t ed ly :

i f (d i g i t a lRead (soundSensor)==0) 2
{

i f (LEDstatus) 3
{

d i g i t a l W r i t e (LED,LOW) ; 4
LEDstatus=f a l s e ;

}
e l s e 5
{

d i g i t a l W r i t e (LED,HIGH) ; 6
LEDstatus=true ;

}
}

}

1. The sound sensor returns 0 or 1 value depending on detection of sound. So that
pin number 8 should be INPUT. The LED will be turned on/off, so that the pin
number 9 will be OUTPUT.

2. The value from sensor is read by using digitalRead function. If this value is equal
0, the sound is detected.

3. If the LED was turned on (LEDstatus equal true), the lines in if block will be
executed.

4. The LED will be turned off and the LEDstatus will be equal false.

5. If the LED was turned off, the lines in else block will be executed.

6. The LED will be turned on and the LEDstatus will be equal to true.

When the program will be uploaded to Arduino board, the LED should light up after
clapping hands or speaking loudly.

The analogous code for the Snap4Arduino software is shown in Figure 52 and consists
of the following lines:

1. The LED and SoundSensor are created and the pin number of connected LED and
sound sensor are put to these variables, respectively.

2. If the sound sensor detects sound (the value will be equal to false), the LED diode
will light up.

3. If the LEDstatus variable had true value previously, the LEDstatus will change the
value to false.

4. If the LEDstatus variable had false value previously, the LEDstatus will change the
value to true.

51

6 SENSORS

Figure 52: The code for example 7 written in Snap4Arduino.

5. The LEDstatus value will be set to the pin connected with LED, so the LED will
be turned on/off.

Example 8

Previous sensor was an example of digital sensor. This example focuses on UV sensor
(determining the ultra-violet radiation intensity on sunny days), which returns analog
value proportional to the UV intensity. The analog value should be transformed to voltage
and then the UV index can be calculated on the basis of Figure 54. In this example, the
returned voltage from sensor and UV index will be displayed on LCD screen, which is
connected to Arduino board as is shown in Figure 53.

The code for Arduino IDE is shown below and consists of the following lines:

#inc lude <Liqu idCrys ta l . h> 1
#d e f i n e RS 22
#d e f i n e E 24

#d e f i n e D4 26 2
#d e f i n e D5 28
#d e f i n e D6 30
#d e f i n e D7 32

i n t UV pin = A0 ; 3
i n t UV analogVal = 0 ;
double UV value = 0 . 0 ;
i n t UV index = 0 ;

52

6 SENSORS

Figure 53: The electronic circuit for example 8.

Liqu idCrys ta l l cd (RS, E, D4 , D5 , D6 , D7) ; 4

void setup () {
// put your setup code here , to run once :

pinMode (UV pin , INPUT) ; 5

l cd . begin (1 6 , 2) ; 6

l cd . c l e a r () ; 7
}

void loop () {
// put your main code here , to run repea t ed ly :

UV analogVal=analogRead (UV pin) ; 8

UV value=UV analogVal ∗5 . 0 / 1 0 2 4 . 0 ; 9

UV index=map(UV value , 0 . 9 9 , 2 . 6 , 0 , 1 5) ; 10

l cd . c l e a r () ; 11

l cd . se tCursor (0 , 0) ; 12
l cd . p r i n t (”A0=”) ;
l cd . p r i n t (UV analogVal) ;

53

6 SENSORS

l cd . p r i n t (” U=”) ; 13
l cd . p r i n t (UV value) ;
l cd . p r i n t (”V”) ;
l cd . se tCursor (0 , 1) ;
l cd . p r i n t (” Index=”) ;
l cd . p r i n t (UV index) ;
de lay (1 0 0) ;

}

1. First, the library for LCD screen is added.

2. The RS, E, D4, D5, D6 and D7 variables are defined. They keep information
about pin number to which the corresponding output of LCD has been connected
on the Arduino board. The word define is preprocessor definition used to define
named values. These values does not occupy random access memory (RAM) in
microcontroller, but these are just inserted to code during compilation. These lines
could be written as e.g. int RS=22; alternatively. However in this way, they will
occupy some space in RAM during program execution (for int type, single value will
occupy 2 bytes). RAM in microcontrollers is often very limited and priceless. For
example Arduino UNO board (with ATmega328 microcontroller) has 2000 bytes of
SRAM (static RAM) memory. In the next chapter, the advanced sensor will be
described and values will be often defined by using define processor definition.

3. The needed variables are defined, which will store information about read analog
value from pin, calculated UV value and index.

4. The lcd object of LiquidCrystal class is created.

5. The analog pin connected to UV sensor is defined as INPUT, because UV sensor
will return the voltage. This value will be read by Arduino board and converted to
number between (0;1023) using internal Analog to Digital converter (ADC).

6. The LCD screen is defined. The begin function needs the number of columns (16)
and rows (2).

7. The LCD screen is cleared.

8. The analog value returned from UV sensor is read and stored in UV analogVal
variable.

9. The analog value is transformed to voltage. The more details about analog values
can be found in Section 5.3.

10. The UV index is calculated according with the Figure 54. The voltage keeps value
between (0.99;2.6)V for room temperature what corresponds (0;15) UV index. The
map function allows to quickly transform the value between one to another range.
The first argument of this function is value. Then the actual range of variable
should be put e.g. (0.99;2.6). The last two arguments are a new range of variable
e.g. (0;15).

54

6 SENSORS

11. The LCD screen is cleared.

12. The cursor on LCD screen is set to (0;0) position. First value means the column
number numerated by starting from 0. The next value is a row number.

13. The print function allows to display chars on LCD screen. This function accepts
numerical values and string values too.

Figure 54: The dependence between returned voltage from sensor and UV index. Source:
[19].

The Arduino board can work without PC computer connected. The standard 5 V
Power Bank can be connected to USB port of the Arduino board as a power supply.
Then the UV sensor can be tested outdoors to see the UV intensity changes on sunny
weather.

The Snap4Arduino has only very basic functionality built-in, therefore the special
Firmata should be uploaded to Arduino board in similar way as for the ultrasonic sensor.
The special libraries with LCD functions can be downloaded from website:

http://blog.s4a.cat/2015/03/24/LCD-Library-for-Snap4Arduino.html

The libraries for LCD screen forces user to connect the LCD screen to specific pins:
RS=12, E=11, D4=5, D5=4, D6=3 and D7=2.

The analogous code for the Snap4Arduino is shown in Figure 55 and consists of the
following lines:

1. The needed variables are defined, which will store information about read analog
value from pin, calculated UV value and index.

2. The analog value returned by UV sensor is read and stored in the UV analogVal
variable.

3. The analog value is transformed to the voltage. The more details about analog
values can be found in Section 5.3.

55

http://blog.s4a.cat/2015/03/24/LCD-Library-for-Snap4Arduino.html

6 SENSORS

4. The UV index is calculated according to the Figure 54. The voltage keeps value
between (0.99;2.6)V for room temperature which corresponds to (0;15) UV index.
The voltage can be transformed to index value by using simple function: index =
9.32 · V oltage− 9.23.

5. The LCD screen is cleared.

6. The cursor in LCD screen is set to position (0,0) using set cursor at function.

7. The values are displayed on LCD screen using print function.

For older version of Snap4Arduino, the print function can not work prop-
erly. Snap4Arduino needs to send commands to Arduino board for all the
time. Therefore, the Arduino board cannot be disconnected from computer
during testing the UV sensor.

Figure 55: The code for example 8 written in Snap4Arduino.

56

6 SENSORS

6.2 The advanced sensors

The advanced sensors return a digital values, which can be read by Arduino board using a
serial communication interfaces (buses). The serial communication interface is a group of
lines, which are used to send data between connected devices. They can be divided in two
groups: synchronous and asynchronous. The first group use additional serial clock line,
which synchronize all devices connected to communication interface. The most popular
synchronous bus are SPI (Serial Peripheral Interface) and I2C (Inter-Integrated Circuit),
which is also marked as I2C or IIC. The most popular asynchronous serial communication
interface are UART (Universal asynchronous receiver-transmitter) and 1-wire.

6.2.1 Serial Peripheral Interface (SPI)

The Serial Peripheral Interface consists on four lines:

• SCK - serial clock, which allows to synchronize devices,

• MOSI (Master Output Slave Input) - line, which transmits bits from master device
to all slave devices,

• MISO (Master Input Slave Output) - line, which transmits bits from slave devices
to master device,

• SS (Slave select) - line, which activate communication with chosen slave device.
The slave device starts to listen and respond when a low value is set on its SS line.
This line is sometimes called Chip select and then marked as CS. To point that
active state is low in line name frequently a line above the text is placed, like SS or
CS.

The schematic connection between devices (block diagram) is shown in Figure 56. The
master is only one and this device receives information from slave devices on demand.
The master device generates the clock signal, which will synchronize all devices. It is
possible to connect many slave devices (e.g. sensors) to master (e.g. Arduino board) but
all slave devices need to have separate SS/CS lines. It is worth to mention that SPI is
full-duplex bus. It means that data can be transmitted and received by device in the
same time.

The dedicated library to use SPI bus in Arduino IDE is called SPI and this library
is installed in Arduino IDE software by default. The most important functions from SPI
library are given in Table 4.

Most sensors have ready libraries for Arduino IDE, which can be found in https:

//www.arduino.cc or github repository. The next example will show how use ready
libraries for sensors, which send data using SPI device.

Example 9

During this example, the accelerometer LIS3DH will be used. This sensor sends data
using SPI or I2C buses. The sensor should be connected according to the Figure 57.

57

https://www.arduino.cc
https://www.arduino.cc

6 SENSORS

Figure 56: The schematic connection between devices using SPI bus. Source: http:

//extronic.pl/content/60-kurs-xmega-interfejs-spi .

58

http://extronic.pl/content/60-kurs-xmega-interfejs-spi
http://extronic.pl/content/60-kurs-xmega-interfejs-spi

6 SENSORS

Function Description
begin Initialization of SPI bus
setBitOrder(MSBFIRST/LSBFIRST) Choose order of a bit transmitted by SPI bus

from two options: LSBFIRST (least-significant
bit first) or MSBFIRST (most-significant bit
first).

transfer(byte) Sending the byte of data.
transfer(0) Reading data from slave devices.

Table 4: The most popular commands for SPI bus.

Figure 57: The electronic circuit for example 9.

The dedicated library for LIS3DH can be downloaded from github repository: https:
//github.com/adafruit/Adafruit_LIS3DH . When you download library, unzip it in-
side library folder in Arduino IDE installed path. Then, open Arduino IDE software once
again. Most ready libraries have examples to start working with sensors. You can find
them in Arduino IDE software by choosing File → Examples → Adafruit LIS3DH →
acceldemo . This example can be helpful to understand how to use a library. Based on
example, you can create your own code as is shown here:

59

https://github.com/adafruit/Adafruit_LIS3DH
https://github.com/adafruit/Adafruit_LIS3DH

6 SENSORS

// Bas ic demo f o r acce l e romete r r ead ings from Adafru i t LIS3DH

#inc lude <SPI . h> 1
#inc lude <Adafruit LIS3DH . h>
#inc lude <Adaf ru i t Sensor . h>

#d e f i n e LIS3DH CS 10 2

Adafruit LIS3DH l i s = Adafruit LIS3DH (LIS3DH CS) ; 3

void setup (void)
{

S e r i a l . begin (115200) ;
S e r i a l . p r i n t l n (”LIS3DH t e s t ! ”) ;

i f (! l i s . begin (0 x18)) 4
{

S e r i a l . p r i n t l n (”Couldn ’ t s t a r t ”) ;
whi l e (1) y i e l d () ;

}
S e r i a l . p r i n t l n (”LIS3DH found ! ”) ;

S e r i a l . p r i n t (”Range = ”) ; S e r i a l . p r i n t (2 << l i s . getRange ()) ;
S e r i a l . p r i n t l n (”G”) ;

// l i s . setDataRate (LIS3DH DATARATE 50 HZ) ;

S e r i a l . p r i n t (”Data ra t e s e t to : ”) ; 5
switch (l i s . getDataRate ())
{

case LIS3DH DATARATE 1 HZ : S e r i a l . p r i n t l n (”1 Hz”) ; break ;
case LIS3DH DATARATE 10 HZ : S e r i a l . p r i n t l n (”10 Hz”) ; break ;
case LIS3DH DATARATE 25 HZ : S e r i a l . p r i n t l n (”25 Hz”) ; break ;
case LIS3DH DATARATE 50 HZ : S e r i a l . p r i n t l n (”50 Hz”) ; break ;
case LIS3DH DATARATE 100 HZ : S e r i a l . p r i n t l n (”100 Hz”) ; break ;
case LIS3DH DATARATE 200 HZ : S e r i a l . p r i n t l n (”200 Hz”) ; break ;
case LIS3DH DATARATE 400 HZ : S e r i a l . p r i n t l n (”400 Hz”) ; break ;

case LIS3DH DATARATE POWERDOWN:
S e r i a l . p r i n t l n (”Powered Down”) ; break ;

case LIS3DH DATARATE LOWPOWER 5KHZ:
S e r i a l . p r i n t l n (”5 Khz Low Power”) ; break ;

case LIS3DH DATARATE LOWPOWER 1K6HZ:
S e r i a l . p r i n t l n (”16 Khz Low Power”) ; break ;

}
}

void loop ()
{

l i s . read () ; // get X Y and Z data at once 6
// Then pr in t out the raw data

S e r i a l . p r i n t (”X: ”) ; S e r i a l . p r i n t (l i s . x) ; 7
S e r i a l . p r i n t (” \tY : ”) ; S e r i a l . p r i n t (l i s . y) ;
S e r i a l . p r i n t (” \ tZ : ”) ; S e r i a l . p r i n t (l i s . z) ;

60

6 SENSORS

/∗ Or get a new senso r event , normal ized ∗/
s e n s o r s e v e n t t event ; 8
l i s . getEvent(&event) ;

/∗ Display the r e s u l t s (a c c e l e r a t i o n i s measured in m/ s ˆ2) ∗/
S e r i a l . p r i n t (”\ t \tX : ”) ; S e r i a l . p r i n t (event . a c c e l e r a t i o n . x) ; 9
S e r i a l . p r i n t (” \tY : ”) ; S e r i a l . p r i n t (event . a c c e l e r a t i o n . y) ;
S e r i a l . p r i n t (” \ tZ : ”) ; S e r i a l . p r i n t (event . a c c e l e r a t i o n . z) ;
S e r i a l . p r i n t l n (” m/ s ˆ2 ”) ;

S e r i a l . p r i n t l n () ;

de lay (2 0 0) ;
}

The code for Arduino IDE is shown above and consists of the following lines:

1. Adding SPI library.

2. Define, which pin will be used as a chip select. Different Arduino boards will have
different pin, which is used as CS/SS. This pin can be arbitrarily chosen from any
digital pin on board.

3. Initialize SPI bus on chosen CS pin.

4. Initialize LIS3DH sensor by using begin function. If function returns error (false
value), than appropriate text will be printed in serial monitor.

5. Printing data rate in serial monitor.

6. Read the X, Y and Z values from sensor.

7. Printing read values in serial monitor.

8. Calculating coordinates of acceleration based on raw X,Y and Z data.

9. Printing results in serial monitor.

Example output after running code is shown in Figure 58.
If you compare official example with above code, you will see strong similarities. You

can create your own code in similar way. If you are interested how exactly communication
with sensor is realized, you can open downloaded library and analyze the source code.
You will find the command from SPI library, which are listed in Table 4. Please remember
that different Arduino boards have MISO, MOSI, SCK and SS pins realized in different
digital pins. Therefore, you should check the pin numbers before you connect sensor to
Arduino board.

61

6 SENSORS

Figure 58: The example output after running code from example 9.

6.2.2 Inter-Integrated Circuit (I2C)

The Inter-Integrated Circuit bus consists on two lines:

• SDA (Serial Data Line) is a data line, which is used to send data between master
and slave devices.

• SCL (Serial Clock Line).

Both lines are connected to VCC by pull-up resistors. The value of resistance influ-
ences on the speed of transmission. The smaller the resistor value is used, the faster data
transmission is possible but at a cost of the higher energy consumption and of course
there is a limit: too low resistance may prevent the low state to be driven on the bus.

The example communication on I2C bus (protocol) is shown in Figure 59.

Figure 59: The I2C communication protocol. Source: [20].

The dedicated library to use I2C bus in Arduino IDE is called Wire and this library
is installed in Arduino IDE software by default. The most important function from Wire
library are given in Table 5.

Most sensors have ready libraries for Arduino IDE, which can be found in https:

//www.arduino.cc or github repository.

62

https://www.arduino.cc
https://www.arduino.cc

6 SENSORS

Function Description
begin() Initialization of I2C bus
beginTransmission(address) Starting transmission with slave device. The function

required the slave address.
write(data) Sending the one byte of data to slave device.
endTransmission() Finishing connection with slave device. The function

returns value depending on how transmission was
finished:
0 - no errors.
1 - the received data is too large.
2 - the device returned NACK after sending address.
3 - the device returned NACK after sending data.
4 - unknown error.

requestFrom(address,size of data) This function is used to request data from
slave device.

available() This function checks if data are available to read.
read() Reading one byte of data from slave devices.

Table 5: The most popular commands for I2C bus.

Example 10
This example will show how to use ready library to read value from pressure sensor

MPL3115A2. This sensor sends data using I2C bus and it should be connected according
to the Figure 60.

Figure 60: The electronic circuit for example 10.

63

6 SENSORS

The dedicated library for MPL3115A2 can be installed from libraries manager inside
Arduino IDE software. After running the Arduino IDE software, you should choose Tools
→ Manage Libraries.... Then, find the SparkFunMPL3115A2 library and install it.

Most ready libraries have examples to start working with sensor. You can find them
in Arduino IDE software by choosing File → Examples → SparkFun MPL3115A2 →
SparkFunPressure . This example can be helpful to understand how to use the library.
Based on example, you can create your own code as is shown here:

#inc lude <Wire . h>
#inc lude ”SparkFunMPL3115A2 . h”

// Create an in s t anc e o f the ob j e c t
MPL3115A2 myPressure ;

void setup ()
{

Wire . begin () ; // Join i 2 c bus
S e r i a l . begin (9 6 0 0) ; // Star t s e r i a l f o r output
myPressure . begin () ; // Get s enso r o n l i n e
// Measure p r e s su r e in Pasca l s from 20 to 110 kPa
myPressure . setModeBarometer () ;
// Set Oversample to the recommended 128
myPressure . setOversampleRate (7) ;
// Enable a l l th ree p r e s su r e and temp event f l a g s
myPressure . enableEventFlags () ;

}

void loop ()
{

//Read the pr e s su r e and d i s p l a y in s e r i a l monitor
f l o a t p r e s su r e = myPressure . r eadPres sure () ;
S e r i a l . p r i n t (” Pressure (Pa) : ”) ;
S e r i a l . p r i n t (pres sure , 2) ;
S e r i a l . p r i n t l n () ;

}

Example output after running code is shown in Figure 61.
If you compare official example with above code, you will see strong similarities. You

can create your own code in similar way. If you are interested how exactly communi-
cation with sensor is realized, you can open downloaded library and analyze the source
code. You will find commands from I2C library, which are listed in Table 5. Please re-
member that different Arduino boards have SDA and SCL lines realized in different pins.
Therefore, you should check the pin numbers before you connect sensor to Arduino board.

Example 11

This example will show how to use I2C library, when the library to sensor is not
available. In this example, the temperature sensor STM75 is connected to the Arduino
board using ready shield.

If you do not have ready library, your first step should be searching for the documen-
tation of sensor. You can find the documentation using web search engine in web browser

64

6 SENSORS

Figure 61: The example output after running code from example 10.

or directly on this website: http://fizyka.if.pw.edu.pl/%7Elabe/data/_uploaded/

file/psw/laboratorium/Lab4/STM_LM75.pdf . Then, review the documentation.

The code should look like that:

#inc lude <Wire . h> 1
#d e f i n e adressTemp 0x48

f l o a t temp =0.0;
unsigned i n t msb=0, l s b =0;

void setup ()
{

Wire . begin () ; 2
S e r i a l . begin (9 6 0 0) ;

}

void loop () {
Wire . beg inTransmiss ion (adressTemp) ; 3

Wire . wr i t e (0 x00) ; 4

Wire . endTransmission () ; 5

Wire . requestFrom (adressTemp , 2) ; 6

whi l e (Wire . a v a i l a b l e ()) { 7

msb = Wire . read () ; 8

l s b = Wire . read () ; 9

l s b = (l s b & 0x80) >> 7 ; 10

temp = msb + 0 .5 ∗ l s b ; 11
S e r i a l . p r i n t (” T=”) ;
S e r i a l . p r i n t l n (temp) ;

}
delay (2 0 0 0) ;

}

65

http://fizyka.if.pw.edu.pl/%7Elabe/data/_uploaded/file/psw/laboratorium/Lab4/STM_LM75.pdf
http://fizyka.if.pw.edu.pl/%7Elabe/data/_uploaded/file/psw/laboratorium/Lab4/STM_LM75.pdf

6 SENSORS

The code for Arduino IDE is shown in above and consists of the following lines:

1. The Wire library is included.

2. The I2C bus is initialized.

3. The transmission with slave device (temperature sensor) is started.

4. According to the documentation (see Figure 62), the temperature value will be
returned by sensor if you send the value equal to 0 (hexadecimal 0x00). The 0 is
the address of register, where the temperature value is stored.

Figure 62: Register function description from documentation of STM75 sensor. The link
to source of documentation is mentioned above.

5. Transmission with slave device is finished.

6. A request for 2 byte of data from slave device is sent.

7. If data are available, then while loop will be executed.

8. According to the documentation (see Figure 63), the temperature value will be
returned with two bytes. First, the most significant part will be returned and store
in msb variable.

Figure 63: Bytes description from documentation to STM75 sensor. The link to source
of documentation is mentioned above.

9. Then, the fractional part of the temperature will be returned and store in lsb vari-
able.

66

6 SENSORS

10. Only the single most significant bit (8th bit) is important. Therefore, the rest bits
should be replaced by 0. This is realized by AND operation. To understand this
line better, let’s follow an example. Suppose we read a value from temperature sen-
sor: 10011010. We want to read only the 8 bit (marked red color). Remember that
0x80 is equal to 10000000 (binary). Let’s make a prefix 0b to this value to distin-
guish from decimal, so it is 0b10000000. Therefore this operation will be realized as:

0b1001 1010
& 0b1000 0000
———————

0b1000 0000

Only 8th-bit has value 1 because AND operation gives 1 only if two bites are equal
to 1. The result value is 0b1000 0000. After conversion to decimal value, the
result will be equal to 128 but it should be equal to 1 or 0. Therefore, the 8th-bit
should be moved to the right side. Right shift operation is performed by value >>
number of shifts. The result of 0b10000000 >> 7 operation is 0b00000001. After
conversion to decimal value, the result will be equal to 1.

11. Combining two parts of temperature into one value.

Example output after running code is shown in Figure 64.

Figure 64: The example output after running code from example 11.

6.2.3 UART

The Universal Synchronous and Asynchronous Receiver and Transmitter (USART) is a
interface, which consists of two lines:

67

6 SENSORS

• RxD - is a line used to receive data,

• TxD - is a line used to transmit data.

We will not utilize the “Synchronous” option of this interface (additional clock line is
needed in such case), so we can treat this interface as UART. The UART data frame is
shown in Figure 65. The frame consists of start bit, data bits and stop bit. The parity
bit is optional.

Figure 65: The UART data frame. Source: [21].

The UART should be configured by setting the speed of transmission in baud rate.
The Arduino boards support the baud rates: 300, 600, 1200, 2400, 4800, 9600, 14400,
19200, 28800, 31250, 38400, 57600, and 115200. Supposing that you would like to send
the packet, which consists of 1 bit start, 8 data bits and 1 bit stop (10 bits in total). If
you configure the baud rate as 9600, the 960 packets (9600/10) can be sent by UART in
1 second.

The dedicated library to use UART in Arduino IDE is called Serial and this library is
installed in Arduino IDE software by default. The most important function from Serial
library are given in Table 6.

Function Description
begin(baud rate) Initialization of USART interface
print(string/numeric) Sending the data
println(string/numeric) Sending the data and the end line sign
available() This function checks if data are available to read.
read() Reading one byte of data.

Table 6: The most popular commands for USART interface.

Example 12

The aim of this example is to show how to use the GPS module (WaveShare NEO-
6M/7M) connected to the Arduino Mega 2560 board (Figure 66).

In first step, the code will be prepared to read whole frame from GPS module:

68

6 SENSORS

Figure 66: The electronic circuit for example 12.

void setup ()
{

S e r i a l . begin (9 6 0 0) ; 1
S e r i a l . p r i n t l n (”WaveShare Neo−6M/7M module t e s t ”) ;

S e r i a l 1 . begin (9 6 0 0) ; 2
}

void loop ()
{

i f (S e r i a l 1 . a v a i l a b l e ()) S e r i a l . wr i t e (S e r i a l 1 . read ()) ; 3
}

The code for Arduino IDE is shown in above and consists of the following lines:

1. Initialization of serial monitor to show the collected data from GPS.

2. Initialization of Serial 1, where the GPS module is connected.

3. If data from GPS module are available, this data will be read and printed in serial
monitor.

Example output after running code is:

WaveShare Neo−6M/7M module t e s t
$GPGSV,3 ,3 , 11 , 27 ,05 ,274 , , 29 , 52 , 081 ,45 ,31 , 24 ,228 ,∗40
$GPGLL,5222 .14246 ,N,02100 .70874 ,E, 110311 . 00 ,A,A∗61
$GPRMC,110312 . 00 ,A,5222 . 14246 ,N,02100 .70874 ,E, 0 . 0 0 9 , , 0 1 0 6 2 1 , , ,A∗77

69

6 SENSORS

Figure 67: The GPGGA (Global Positioning System Fix Data) frame. Source: [22].

$GPVTG, ,T, ,M, 0 . 0 0 9 ,N, 0 . 0 1 7 ,K,A∗2C
$GPGGA,110312 .00 , 5222 .14246 ,N,02100 .70874 ,E, 1 , 0 7 , 1 . 1 8 , 1 2 3 . 3 ,M, 3 5 . 4 ,M, ,∗58

The first world (GPGSV, GPGLL, GPRMC, GPVTG, GPGGA) is a id of GPS frame.
The different frames present different data. The most important frame is GPGGA, which
is shown in Figure 67. The parameters shown in row are separated by comma.

The previous code will be modified to show the time, latitude, longitude, quality of
signal, number of satellites, precision and height:

i n t h=0, m=0, s =0;
long i n t t =0;

void setup ()
{

S e r i a l . begin (9 6 0 0) ;
S e r i a l . p r i n t l n (”WaveShare Neo−6M/7M module t e s t ”) ;
S e r i a l 1 . begin (9 6 0 0) ;

70

6 SENSORS

S e r i a l . p r i n t l n (”Time \ t Lat i tude \ t Longitude \ t Qual i ty \ t Number o f
S a t e l l i t e s \ t P r e c i s i o n \ t Height ”) ;

}

void loop ()
{

i f (S e r i a l 1 . a v a i l a b l e ())
{

St r ing element=S e r i a l 1 . r eadSt r i ngUnt i l (’ , ’) ; 1

i f (s t r s t r (element . c s t r () , ”GPGGA”)!=NULL) 2
{

St r ing time=S e r i a l 1 . r e adSt r i ngUnt i l (’ , ’) ; 3
S t r ing width=S e r i a l 1 . r e adSt r i ngUnt i l (’ , ’) ;
S t r ing N=S e r i a l 1 . r e adSt r i ngUnt i l (’ , ’) ;
S t r ing l enght=S e r i a l 1 . r e adSt r i ngUnt i l (’ , ’) ;
S t r ing S=S e r i a l 1 . r e adSt r ingUnt i l (’ , ’) ;
S t r ing q u a l i t y=S e r i a l 1 . r e adSt r i ngUnt i l (’ , ’) ;
S t r ing n S a t e l i t e s=S e r i a l 1 . r eadSt r i ngUnt i l (’ , ’) ;
S t r ing p r e c i s i o n=S e r i a l 1 . r e adSt r i ngUnt i l (’ , ’) ;
S t r ing high=S e r i a l 1 . r e adSt r i ngUnt i l (’ , ’) ;

t=a t o l (time . c s t r ()) ; 4

h=t /10000; 5
m=(t−h∗10000) ;
m=m/100 ;
s=t−h∗10000−m∗100 ;

S e r i a l . p r i n t (h) ; 6
S e r i a l . wr i t e (’ : ’) ;
S e r i a l . p r i n t (m) ;
S e r i a l . p r i n t (’ : ’) ;
S e r i a l . p r i n t (s) ;
S e r i a l . wr i t e (’ \ t ’) ;
S e r i a l . wr i t e (width . c s t r ()) ;
S e r i a l . wr i t e (’ \ t ’) ;
S e r i a l . wr i t e (l enght . c s t r ()) ;
S e r i a l . wr i t e (’ \ t ’) ;
S e r i a l . wr i t e (q u a l i t y . c s t r ()) ;
S e r i a l . wr i t e (’ \ t ’) ;
S e r i a l . wr i t e (n S a t e l i t e s . c s t r ()) ;
S e r i a l . wr i t e (’ \ t ’) ;
S e r i a l . wr i t e (p r e c i s i o n . c s t r ()) ;
S e r i a l . wr i t e (’ \ t ’) ;
S e r i a l . wr i t e (high . c s t r ()) ;
S e r i a l . wr i t e (’ \n ’) ;

}
}

}

The code for Arduino IDE is shown above and consists of the following lines:

1. Reading data until comma sign and writing it to element variable.

2. The strstr function checks if GPGGA word exists in element. If yes, the function
returns the localisation of word. Additionally, the c str function is used to convert

71

6 SENSORS

the element variable from String data type (specific data type in Arduino software)
to C-standard string data type (consisting of characters array ending with null
char).

3. Reading the another parameter from GPGGA frame.

4. Time is converted from string to long integer value.

5. Time is divided to hours, minutes and seconds.

6. The read values are printed in serial monitor.

Example output after running the code looks like:

WaveShare Neo−6M/7M module t e s t
Time Lat i tude Longitude Qual i ty Number o f S a t e l l i t e s P r e c i s i o n
Height
11 : 31 : 12 5222.14246 02100.70874 1 07 1 .27 116 .4

6.2.4 1-wire

The 1-wire interface was developed by Dallas Semiconductor company. This bus consists
of only one line. This interface works similar to I2C bus but the 0 and 1 bits are defined
by time duration of low signal. The 1-wire protocol is shown in Figure 68. The 1-wire
bus works slower than I2C. Maximal speed is 16kbit/s.

Figure 68: The 1-wire protocol

72

6 SENSORS

The dedicated library to use 1-wire bus in Arduino IDE is called OneWire and this
library should be installed in Arduino IDE software. The most important function from
OneWire library are given in Table 7.

Function Description
search(byte array) Returns addresses of modules connected

to the 1-wire bus
reset() Reset
select(address) This function selects the slave device.
write(data, parasitic power - 1 or 0) This function sends the data for slave device
read() This function reads the data from slave device

Table 7: The most popular commands for 1-wire bus.

Example 13

During this example the digital thermometer (DS18B20) will be used. The program
will read the actual temperature from sensor using the 1-wire bus. The DS18B20 should
be connected to the Arduino board according to Figure 69.

Figure 69: The electronic circuit for example 13.

The dedicated library for DS18B20 can be installed from libraries manager inside
Arduino IDE software. After running the Arduino IDE software, you should chose Tools
→ Manage Libraries.... Then, find the DallasTemperature library and install it.

You can find example for DallasTemperature library in Arduino IDE software by
choosing File → Examples → DallasTemperature → Simple . This example can be
helpful to understand how to use the library. Based on example, you can create your own
code as is shown here:

#inc lude <Wire . h>

#inc lude <OneWire . h> 1
#inc lude <DallasTemperature . h>

#d e f i n e ONE WIRE BUS 3 2

OneWire oneWire (ONE WIRE BUS) ; 3

DallasTemperature s e n s o r s (&oneWire) ; 4

73

6 SENSORS

void setup ()
{

S e r i a l . begin (9 6 0 0) ;

s e n s o r s . begin () ; 5
}

void loop ()
{

s e n s o r s . requestTemperatures () ; 6

S e r i a l . p r i n t l n (s e n s o r s . getTempCByIndex (0)) ; 7
de lay (1 0 0) ;

}

The code for Arduino IDE is shown in above and consists of the following lines:

1. Adding necessary libraries for 1-wire bus and DS18B20 sensor.

2. Defining, which pin will be used for 1-wire bus.

3. Creating object of OneWire class.

4. Creating object of DallasTemperature class.

5. Initialization of DS18B20 sensor.

6. Request for temperature value from DS18B20 sensor.

7. Reading temperature value from sensor and displaying it in serial monitor.

Example output after running code is shown in Figure 70.

Figure 70: The example output after running code from example 13.

74

7 ACTUATORS

(a) Servo (b) DC motor

Figure 71: The example actuators. Source: [15].

7 Actuators

Actuators are elements making a movement. The basic actuators are: servo (Figure 71a)
and motor (Figure 71b).

7.1 Servo

The servo is a motor with a gear that rotates by a given angle, usually in the range of
(0;180)o or (-90;90)o. The construction of the servo is shown in Figure 72.

The servo can be connected directly to the Arduino board. The three wires are brought
out of the servo. The middle one (usually red) should be connected to the power supply
(+5V). The black one is GND and the last wire (usually light colored: white/yellow) is
the control that should be connected to the PWM pin.

The servo control is based on the PWM signal. The controller, located in the servo,
reads the PWM signal and on its basis determines the angle by which the gear is to
rotate. The idea of the servo operation is shown in Figure 73.

The servo can be controlled via Snap4Arduino and Arduino IDE. There is only one
function in Snap4Arduino to control the servo: set servo. In this function, the angle
should be between 0o to 180o. Therefore, the 0o represents not a middle point but the
minimum point in the right side.

The dedicated library to servo control in Arduino IDE is called Servo and this library
is installed in Arduino IDE software by default. The most important function from Servo
library are given in Table 8.

Example 14

75

7 ACTUATORS

Figure 72: The construction of the servo. Source: [23].

Function Description
attach(PWM pin number) This function links the servo with chosen PWM pin.
detach() This function removes the connection between servo

and PWM pin.
read() This function allows to read the angle of deflection

of the servo.
write(angle) This function allows to set the angle of deflection

of the servo.

Table 8: The most popular commands to servo control.

In this example, the servo will move from minimum position through middle position
to the maximum position and back again. The position will be changed every 1s. First,
the servo should be connected to the Arduino board according to Figure 74.

The code for Snap4Arduino is shown in Figure 75 and consists of the following lines:

1. A pin variable is created, which will store the pin number where servo is connected.
The value 7 is written to pin variable.

2. The servo position is changed to 0 (right corner).

3. The servo position is changed to 90 (middle).

4. The servo position is changed to 180 (left corner).

5. The servo position is changed to 90 (middle).

After running the code, servo will change position between minimum and maximum.
The analogous code for the Arduino IDE software is shown here:

76

7 ACTUATORS

Figure 73: The idea of the servo operation. Source: [24].

Figure 74: The electronic circuit for example 14.

#inc lude <Servo . h>

i n t pin =7; 1

Servo servo ; 2

void setup () {
se rvo . attach (pin) ; 3

}

77

7 ACTUATORS

Figure 75: The code for example 14 written in Snap4Arduino.

void loop () {
se rvo . wr i t e (0) ; 4
de lay (1 0 0 0) ;

s e rvo . wr i t e (9 0) ; 5
de lay (1 0 0 0) ;

s e rvo . wr i t e (1 8 0) ; 6
de lay (1 0 0 0) ;

s e rvo . wr i t e (9 0) ; 7
de lay (1 0 0 0) ;

}

The code for Arduino IDE consists of the following lines:

1. A pin variable is created, which will store the pin number where servo is connected.
The value 7 is written to pin variable.

2. The object of Servo class is created.

3. The pin is linked with the servo.

4. The servo position is changed to 0 (right corner).

5. The servo position is changed to 90 (middle).

6. The servo position is changed to 180 (left corner).

7. The servo position is changed to 90 (middle).

78

7 ACTUATORS

7.2 Motor

The principle of DC motor was described in chapter 4.2. In this chapter, we will focus
on programming part connected with DC motor. The motor should be connected via the
controller to the Arduino board as is shown in Figure 76.

Figure 76: The electronic circuit for example 15.

Example 15

In this example, the motor speed will be increased from minimum to maximum. Then
the direction of the motor rotation will be reversed and the motor rotation speed will be
repeatedly increased from minimum to maximum.

The code for Snap4Arduino is shown in Figure 77 and consists of the following lines:

1. The motor variable is created, which will store the pin number connected to PWM
input in motor driver. The value 7 is set to motor variable.

2. The dir variable is created, which will store the pin number connected to direction
output from motor driver. The value 53 is set to dir variable.

3. The direction of rotation of the motor is set counter-clockwise.

79

7 ACTUATORS

Figure 77: The code for example 15 written in Snap4Arduino.

4. Inside the for loop, the duty cycle of PWM signal is changing from 0 to 255. The
delay between changes is 0.1s.

5. The direction of rotation of the motor is set clockwise.

6. Inside the for loop, the duty cycle of PWM signal is changing from 0 to 255. The
delay between changes is 0.1s.

7. The direction of rotation of the motor is set counter-clockwise.

The analogous code for the Arduino IDE software is shown in here:

i n t motor=7; 1

i n t d i r =53; 2

void setup () {
pinMode (motor ,OUTPUT) ; 3
pinMode (dir ,OUTPUT) ;

}

void loop () {
d i g i t a l W r i t e (d ir ,HIGH) ; 4

f o r (unsigned i n t i =0; i <255; i++) 5
{

analogWrite (motor , i) ;
de lay (1 0 0) ;

}
d i g i t a l W r i t e (d ir ,LOW) ; 6

80

8 INTERRUPTS

f o r (unsigned i n t i =0; i <255; i++) 7
{

analogWrite (motor , i) ;
de lay (1 0 0) ;

}
}

The code for Arduino IDE consists of the following lines:

1. The motor variable is created, which will store the pin number connected to PWM
input in motor driver. The value 7 is set to motor variable.

2. The dir variable is created, which will store the pin number connected to direction
output from motor driver. The value 53 is set to dir variable.

3. The pins are configured as a outputs.

4. The direction of rotation of the motor is set counter-clockwise.

5. Inside the for loop, the duty cycle of PWM signal is changing from 0 to 255. The
delay between changes is 0.1s.

6. The direction of rotation of the motor is set clockwise.

7. Inside the for loop, the duty cycle of PWM signal is changing from 0 to 255. The
delay between changes is 0.1s.

8 Interrupts

The interrupts are mechanism, which allow to pause the execution of the code when an
external signal occurs. As the external signal can be e.g. falling edge or LOW signal
from button, sensors etc. The interrupts should be used when executing the part of
code is critical when signal occurs e.g. in the alarm system when motion sensor detects
the movement, the alarm should be turned on. Sometimes, the code is complex and
continuous checking is impossible due to delays in different parts of code. In this situation,
the interrupts should be used.

The attachInterrupt(number of interrupt, function, react to) defines the interrupt and
function, which will run after interrupt occurs. On the Arduino board, only the specific
pins allow to generate the interrupt according to the table 9.

Board int.0 int.1 int.2 int.3 int.4 int.5
Uno 2 3

Mega 2560 2 3 21 20 19 18

Table 9: The pin, which can be used to detect the external interrupts.

The interrupts can be caused by:

• LOW - the interrupt will be generated after LOW signal occurs on pin.

81

8 INTERRUPTS

• CHANGE - the interrupt will be generated after changing HIGH signal to LOW
signal or LOW signal to HIGH signal.

• RISING - the interrupt will be generated after changing LOW signal to HIGH
signal.

• FALLING - the interrupt will be generated after changing HIGH signal to LOW
signal.

The interrupts can be used only in the Arduino IDE software.

Example 16

In this example, we will build a simple alarm system that will consist of a PIR motion
sensor and a buzzer. When motion is detected, the buzzer will be activated for 1s. The
electronic circuit should be connected as in Figure 78.

The code in Arduino IDE is shown here:

i n t buzzer =7; 1

bool on=0; 2

void setup () {
pinMode (buzzer ,OUTPUT) ; 3

a t ta ch In t e r rup t (0 , alarm , RISING) ; 4
}

void alarm () 5
{

on=1;
}

void loop () {
// put your main code here , to run repea t ed ly :

i f (on) 6
{

analogWrite (buzzer , 1 0 0) ;
de lay (1 0 0 0) ;
on=0;

}
e l s e analogWrite (buzzer , 0) ; 7

}

The code for Arduino IDE consists of following lines:

1. The buzzer variable is created, which will store the pin number where buzzer is
connected to the Arduino board.

2. The on variable is created, which will store the status of alarm (0 - no movement,
1 - movement).

3. The pin where buzzer is connected is configured as output.

82

8 INTERRUPTS

Figure 78: The electronic circuit for example 16.

4. The interrupt is configured. First argument is a number of the interrupt. The
PIR motion sensor is connected to pin number 2. According to the table 9, this
is interrupt number 0. Second argument is the name of function, which should be
executed when interrupt occurs. The last argument is type of signal, which will
stimulate the interrupt.

5. The interrupt function is created. In its middle, the value of the variable on is set
to 1.

6. If motion is detected, the buzzer is activated by setting the PWM signal duty cycle
to 100. Then a 1s delay is executed. The last step is to change the value of the
variable on to 0.

7. If the motion is not detected, the buzzer is turned off.

83

9 WIRELESS COMMUNICATION

9 Wireless communication

In some projects, the collected data is passed on, e.g. for the purpose of visualization
or analysis. Often it is not possible to physically connect the Arduino board to another
device, such as a computer, another Arduino board, Raspberry PI, etc. In such cases,
you can use wireless communication and send data using, for example, radio modules,
Bluetooth modules, RFID modules or network modules. In this chapter, we cover the
first three types of modules. Sample modules are shown in the Figure 79.

(a) Radio module. (b) Bluetooth module (c) RFID module

Figure 79: The example wireless communication modules. Source: [15].

9.1 Radio communication

Radio communication takes place with the use of antennas that emit and receive electro-
magnetic waves adequately amplified. Depending on this amplification, such transmission
may have a different range (from a few cm in the case of proximity cards to hundreds of
thousands of kilometers in the case of space probes).

Radio communication modules are cheap and easy to use. However, you need to re-
member that most of them require a 3.3V power supply.

Example 17

In this example we will be using two Arduino boards. A radio module (nRF24L01) will
be connected to both boards. The LM35 temperature sensor, discussed in chapter 5.3,
will be additionally connected to the first Arduino board. The first Arduino board will be
used to read the ambient temperature and send information about the read temperature
via radio. So such a board will work as a transmitter. The second Arduino board will
work as a receiver, i.e. it will receive the temperature value and display it on the serial
monitor. The circuit should be connected according to Figure 80.

First, we will analyze the code in the Arduino IDE for the transmitter, which looks
like this:

#inc lude <SPI . h>
#inc lude <nRF24L01 . h>
#inc lude <RF24 . h>

84

9 WIRELESS COMMUNICATION

#inc lude <p r i n t f . h>

RF24 rad io (4 8 , 5 3) ; 1

const byte rxAddress [6]= ”00001” ; 2

i n t LM35=A0 ;
i n t va lue =0;
f l o a t vo l t age ;
f l o a t temp =0.0;

void setup ()
{

pinMode (LM35, INPUT) ;

S e r i a l . begin (9 6 0 0) ;
p r i n t f b e g i n () ;

i f (! r ad io . begin ()) S e r i a l . p r i n t l n (” I n i t i a l i z a t i o n f a i l e d ! ”) ; 3

rad io . setPALevel (RF24 PA MAX) ; 4

rad io . s e t R e t r i e s (1 5 , 1 5) ; 5

rad io . openWritingPipe (rxAddress) ; 6

rad io . s t o pL i s t e n in g () ; 7
}

void loop ()
{

value=analogRead (LM35) ;
vo l t age =(5 .0/1024 .0)∗ value ;
temp=vo l tage ∗1 0 0 . 0 ;
S e r i a l . p r i n t l n (temp) ;

rad io . wr i t e (&temp , s i z e o f (f l o a t)) ; 8
de lay (1 0 0 0) ;

}

The code for transmitter consists of following lines:

1. The creation of object of RF24 class. The arguments are: pin connected to CE and
pin connected to CSN.

2. The creation of address.

3. Initialization of radio module.

4. Setting the output power of the transmitter. The option RF24 PA MAX means
0 dBm. Other options available: RF24 PA MIN= -18dBm, RF24 PA LOW=
-12dBm and RF24 PA HIGH =-6dBm.

5. The setRetries function sets how many times a module should attempt to establish
communication before returning an error. The first argument is the time between
repetitions. The second argument is the number of repetitions.

85

9 WIRELESS COMMUNICATION

6. Create a link (pipe) to send data.

7. End listening. Switching to transmission mode.

8. Sending the temperature value.

In the second step, we will analyze the receiver code:

#inc lude <SPI . h>
#inc lude <nRF24L01 . h>
#inc lude <RF24 . h>
#inc lude <p r i n t f . h>

RF24 rad io (48 , 5 3) ; 1

const byte rxAddr [6] = ”00001” ; 2

void setup ()
{

whi le (! S e r i a l) ;
S e r i a l . begin (115200) ;

p r i n t f b e g i n () ;

rad io . begin () ; 3

rad io . setPALevel (RF24 PA MIN) ; 4

rad io . openReadingPipe (1 , rxAddr) ; 5

rad io . s t a r t L i s t e n i n g () ; 6
}

void loop ()
{

i f (r ad io . a v a i l a b l e ()) 7
{

f l o a t temp ;
rad io . read(&temp , s i z e o f (f l o a t)) ;
S e r i a l . p r i n t l n (temp) ;

}
}

The code for receiver consists of following lines:

1. The creation of object of RF24 class. The arguments are: pin connected to CE and
pin connected to CSN.

2. The creation of address.

3. Initialization of radio module.

4. Setting the output power of the transmitter. The option RF24 PA MIN means
-18 dBm.

5. Opening a link for reading pipe. The first argument is the link number (there can
be a maximum of 6). The second argument is the address.

86

9 WIRELESS COMMUNICATION

Figure 80: The electronic circuit for example 17.

6. Start listening.

7. If the data is ready for reading, the temperature is displayed on the serial monitor.

87

9 WIRELESS COMMUNICATION

9.2 Bluetooth

The Bluetooth modules are cheap and easy to use. The most popular one is HC-05 or
HC-06. You can use many libraries to program the Bluetooth module. The very inter-
esting and user-friendly library is RemoteXY, which can be installed by using Manage
libraries inside the Arduino IDE software.

Example 18

In this example, we will create a program that will control the position of the servo
from the Android smartphone level. Connectivity between the Arduino board and the
smartphone will be provided by the Bluetooth HC-05 module. We will use the RemoteXY
library, which you should first install in the Arduino IDE using Manage libraries. In
addition, a smartphone app, also called RemoteXY, should be installed. You will find it
in the Google Play Store. When you install the necessary elements, we will be able to
move on to the more interesting part, e.g. creating an application.

First, connect the circuit according to Figure 81.

Figure 81: The electronic circuit for example 18.

Second, open up https://remotexy.com/en/editor/. Here you can create a user
interface (GUI). In this case, let’s use a slider that will store the selected servo position by
the user. On the right side there is the View section where you can change the variable
name assigned to the slider as well as its appearance. A sample GUI is shown in the
Figure 82.

When the GUI looks satisfactory, click on the Get source code button. Then copy all
visible code to the Arduino IDE.

In the next step, we will add a code that allows you to control the servo in the same
way as in example 14.

Sample code looks like this:

// //

88

https://remotexy.com/en/editor/

9 WIRELESS COMMUNICATION

Figure 82: The example GUI.

// RemoteXY inc lude l i b r a r y //
// //

// RemoteXY s e l e c t connect ion mode and inc lude l i b r a r y
#d e f i n e REMOTEXY MODE SOFTSERIAL
#inc lude <S o f t w a r e S e r i a l . h>
#inc lude <RemoteXY . h>

// RemoteXY connect ion s e t t i n g s

#d e f i n e REMOTEXY SERIAL RX 51 1

#d e f i n e REMOTEXY SERIAL TX 50 2
#d e f i n e REMOTEXY SERIAL SPEED 9600

// RemoteXY c o n f i g u r a t e
#pragma pack (push , 1)
u i n t 8 t RemoteXY CONF [] =
{ 255 ,1 , 0 , 0 , 0 , 11 , 0 , 11 , 13 , 0 ,
4 ,128 ,28 ,27 ,51 ,6 ,6 ,26 } ;

// t h i s s t r u c t u r e d e f i n e s a l l the v a r i a b l e s and events o f your c o n t r o l i n t e r f a c e
s t r u c t {

// input v a r i a b l e s
i n t 8 t s l i d e r ; // =0. .100 s l i d e r p o s i t i o n

// other v a r i a b l e
u i n t 8 t c o n n e c t f l a g ; // =1 i f wire connected , e l s e =0

} RemoteXY ;
#pragma pack (pop)

// ///
// END RemoteXY inc lude //
// ///

89

9 WIRELESS COMMUNICATION

#inc lude <Servo . h> 3
i n t pin =7;
double ang le ;
Servo servo ;

void setup ()
{

RemoteXY Init () ; 4

se rvo . attach (pin) ; 5
}

void loop ()
{

RemoteXY Handler () ; 6

ang le=map(RemoteXY . s l i d e r , 0 , 1 0 0 , 0 , 1 8 0) ; 7

se rvo . wr i t e (ang le) ; 8
}

The code consists of following lines:

1. Definition which pin will work as RX. Remember that software serial can be created
only on specific pins. Check, which pins can be used in https://www.arduino.cc.

2. Definition which pin will work as TX.

3. Adding of library and creating the necessary variables to control servo. This code
is the same as in example 14.

4. Initialization of RemoteXY.

5. Connecting chosen pin number with servo.

6. This line allows to receive changes on GUI interface like changing the slider position.

7. The slider returns values between 0 to 100. The angle is between 0 to 180. There-
fore, the read value from slider should be recalculated to new range (0-180). The
map function allows to do it automatically. First you need to put the read value
from slider, then the old range of variable and next is the new range of variable.

8. The chosen position is set on servo.

9.3 RFID

RFID (Radio-frequency identification) is a technique that uses radio waves to transmit
data over short distances. Each device has a unique RFID key consisting of 14 numbers.
RFID modules have found widespread use wherever quick identification is necessary, e.g.
when opening the door, proximity cards. There are several libraries to support RFID
modules. One of the most popular ones is: MFRC522, which needs to be installed from
the Arduino IDE using Manage libraries.

90

https://www.arduino.cc

9 WIRELESS COMMUNICATION

Example 19

In this example, we will connect two LEDs (red and green) and an RFID module to
the Arduino board. If the user brings the RFID pendant close to the module and the
key is recognized, the green LED will light up. Otherwise the red LED will light. The
electronic circuit should be connected according to Figure 83.

When you install MFRC522 library, you can analyse the example called readNUID.
Based on example, the code should look like:

#inc lude <SPI . h>
#inc lude <MFRC522. h>

i n t RED LED=7; 1
i n t GREEN LED=6;

#d e f i n e RST PIN 22 2
#d e f i n e SS PIN 53

MFRC522 mfrc522 (SS PIN , RST PIN) ; 3

byte nuidPICC [4] ; 4

i n t key [4]={23 ,189 ,10 ,179} ; 5

bool same=true ; 6

void setup ()
{

pinMode (RED LED,OUTPUT) ; 7
pinMode (GREEN LED,OUTPUT) ;

S e r i a l . begin (9 6 0 0) ;

SPI . begin () ; 8
mfrc522 . PCD Init () ;
S e r i a l . p r i n t l n (”Reading the RFID code ”) ;

}

void loop () {
// put your main code here , to run repea t ed ly :

i f (mfrc522 . PICC IsNewCardPresent ()) 9
{

i f (mfrc522 . PICC ReadCardSerial ()) 10
{

S e r i a l . p r i n t (”RFID card ID : ”) ;
f o r (byte i = 0 ; i < mfrc522 . uid . s i z e ; i++)
{

nuidPICC [i] = mfrc522 . uid . uidByte [i] ;
S e r i a l . p r i n t (mfrc522 . uid . uidByte [i] < 0x10 ? ” 0” : ” ”) ;
S e r i a l . p r i n t (mfrc522 . uid . uidByte [i] , DEC) ;

}
S e r i a l . p r i n t l n () ;
mfrc522 . PICC HaltA () ;
}

}

91

9 WIRELESS COMMUNICATION

//Key check ing
same=true ;

f o r (byte i = 0 ; i < 4 ; i++) 11
{

i f (key [i] != nuidPICC [i]) same=f a l s e ;
}

// Cleaning t a b l e

f o r (byte i = 0 ; i < 4 ; i++) nuidPICC [i]=0; 12

i f (same) 13
{

S e r i a l . p r i n t l n (”Key recogn i z ed ”) ;
d i g i t a l W r i t e (GREEN LED,HIGH) ;
d i g i t a l W r i t e (RED LED,LOW) ;

}
e l s e
{

d i g i t a l W r i t e (GREEN LED,LOW) ;
d i g i t a l W r i t e (RED LED,HIGH) ;

}
delay (5 0 0) ;

}

The code consists of following lines:

1. The variables are created, which will store the pin numbers where red and green
LED diodes are connected.

2. The variables are created, which will store the pin numbers where reset and chip
select are connected.

3. The object of MFRC522 is created.

4. The nuidPICC table is created, which will store the read key from pendant.

5. The key table is created, which stores the proper key.

6. The same variable is created, which will inform if the read key is the same as proper
key.

7. The pins, where LED diodes are connected, are defined as output.

8. The SPI bus and MFRC522 module are initialized.

9. This line checks if new pendant is close to RFID module.

10. This if structure reads the key of pendant and save to nuidPICC table.

11. The read key is checked with the proper one.

12. The nuidPICC table is cleaning.

13. If the key of pendant is proper, the green LED is turned on. Otherwise, the red
LED is turned on.

92

9 WIRELESS COMMUNICATION

Figure 83: The electronic circuit for example 19.

93

10 DESIGNING OF THE ROBOT

10 Designing of the robot

10.1 Definition of a robot

Before we start our adventure with robotics, let’s consider what a robot is. There are
many definitions of a robot that better or less fit modern robots. The best matching
definition can be found in book The Robotics Primer [25], which defines a robot as:

”A robot is an autonomous system which exists in the physical world, can sense its
environment, and can act on it to achieve some goals.” [25]

What does the definition of a robot mean? A robot will be any device that will receive
information from the environment using e.g. sensors and will make decisions based on
them. The robot does not need to move, it can be static. It is important that it should
be able to make decisions based on information from sensors. Let’s take a look at the six
proposed robotic projects to be implemented in the classrooms:

1. Lighthouse project - the project aims to create an intelligent lighthouse that will
turn on the light only when it is dark outside and change the blinking frequency
depending on whether the ship is near or far from the shore. Can the lighthouse
be a robot? At first, most will say no. However, there is no such basis for not
being a robot. It meets all three assumptions: it exists in the real world (it is not
a simulation), receives information from the environment (light intensity using a
photoresistor; the distance of the ship from the shore using an ultrasonic sensor)
and makes decisions based on the input information (whether to turn on the light
or not; how often to blink).

2. Sunflower project - The project aims to create a sunflower that moves towards the
light. Here too, all three assumptions are met. Sunflower is a robot that receives
information about the intensity of light based on photoresistors and depending on
the value read, it will decide which way to move.

3. Smart light project - the aim of this project is to create intelligent lighting that will
light up when motion is detected. Otherwise the lighting will be off. Here, too, we
have the basis for calling a smart light robot. Based on the PIR motion sensor, a
decision is made to turn on orturn off the lighting.

4. Theremin project - the goal of this project is to create Theremin that will be con-
trolled with two hands. Depending on the distance of the hand from the ultrasonic
distance sensor and the photoresistor, different pitch and beat will be produced. In
this case, Theremin is also a robot that decides what pitch and beat to produce.

5. DIY automobile project - this project consists in creating a driving robot that will
have a number of possibilities from detecting and avoiding obstacles to completing
a route according to a complex algorithm (shape). This design is the most obvious
example of a robot.

94

10 DESIGNING OF THE ROBOT

6. Weather station - this project is another extraordinary example of a robot. Its
purpose is to collect information about the weather (temperature, humidity and
pressure), but also to inform the user by changing the color of the LCD screen
whether it is cold or warm. This part with color change is the key factor, therefore
this weather station is a robot. Here we have a decision element in the form of
information whether the temperature is appropriate or too low/high.

The described interdisciplinary robotic projects show how broad the concept of a robot
is. The shape and purpose of the robot’s work is limited only to our imagination. Let’s
just remember that each robot must somehow obtain information from the environment
and make decisions and act on their basis.

Detailed descriptions of projects along with an exemplary implementation are avail-
able in the educational materials.

10.2 How does the robot work?

Before we start building a robot, a few things should be planned. The first is the way
the robot works. There are three main robotic working architectures. The first of them
is reactive control, which most of you will perform intuitively during the first attempts
to create a robot. This architecture is based on a simple mechanism. Depending on the
information received from the environment, a decision is made. An example is the smart
light project described briefly in the previous section. When motion is detected, the light
is turned on. So based on information (move or not), the decision is made (turn on or
off the lights).

The second option is deliberative control, in this case, after reading information from
the environment, the next actions are planned and then the action is performed. An
example would be a robot playing checkers. After the opponent’s move, the robot analyzes
possible scenarios and performs the move according to the optimal scenario.

The last option is hybrid control, which combines the advantages of both methods.
Those activities that require quick reactions are carried out according to reactive control.
On the other hand, strategic decisions are made according to the deliberative control
architecture.

10.3 How to start building a robot?

The construction of the robot can be divided into the following stages:

1. Defining the purpose and requirements:
At the beginning, it is necessary to consider what the purpose of the robot is. Then,
knowing the goal, you need to define a list of requirements, e.g. speed of movement
of the robot, load capacity, frequency of activities, etc.

2. Way of getting around:
If the robot should move, you should consider on what surfaces the robot will move.

95

10 DESIGNING OF THE ROBOT

If these are flat surfaces, you can consider the use of wheels. Often the wheels are
mounted on a differential gear, i.e. two wheels connected to two motors on one
axis of rotation are used. For the stability of the robot, an additional auxiliary
wheel (so-called caster wheel) can be added. This solution was used in the DIY-
automobile project. I encourage you to read the materials for this project, which
shows how to mount the wheels on the differential gear.

If the robot is to move outside then the ground unevenness must be taken into
account. If the terrain is relatively flat, it is enough to choose the right wheels.
However, there may be times when the ground is not compacted enough and the
wheels get stuck in the ground. Then the use of caterpillars will be a better solution.

An interesting idea is to create a robot that moves analogously to animals, e.g.
spider, dog or fish. The construction of such a robot is a challenge, but it encourages
the creators to get acquainted with many fields of science, e.g. biology, physics etc.

3. Determining the method of collecting information from the environment:

In the next step, it is necessary to define what information from the environment
will be read by the robot. Based on this, sensors should be selected.

4. Defining the actuators:

Next, you should define what actuators will be needed. Depending on the purpose,
these can be: motors, servos, etc. Sometimes our robot does not need to have ac-
tuators. Examples include the following projects: lighthouse, smart light, theremin
and weather station. In these projects, no movement is made, but decisions are
made.

5. Defining the robot’s work architecture and the robot’s ”heart”:

In the previous section, the three main robotic architectures were discussed: reactive
control, deliberative control and hybrid control. If the robot is to perform a simple
goal based on current or average sensor readings, the most convenient architecture
will be reactive control, which is used in all proposed robotic projects. A simple
microcontroller, e.g. in an Arduino board, is enough to implement this architecture.
If you choose architectures: deliberative control or hybrid control, it may be better
to use a stronger computationally platform (other than Arduino), e.g. Raspberry
Pi.

6. Defining the method of communication with the robot (optional step):

In some cases, it is necessary to communicate with the robot using e.g. Bluetooth
modules, radio modules or RFID modules. In such cases, it is necessary to specify
how the modules are connected and what information is to be transferred. An
example project showing remote communication with a robot is DIY-automobile
(level 4).

96

10 DESIGNING OF THE ROBOT

7. Identification of other necessary electronic components:

Most projects require the use of additional electronic components such as LEDs,
resistors, capacitors, transistors, displays etc.

8. Identification of mechanical elements:

Once you have a list of all electronic components that should be connected to the
”heart” of the robot, e.g. Arduino, consider how to attach them. You can use
everyday materials such as cardboard boxes, cardboard, plastic or metal packaging.
You can use screws, hot glue or even tape to attach the elements. In simple projects,
this approach is enough. In more advanced projects, you can use a 3D printer and
make a base design with holders for sensors or actuators.

9. Building a robot:

Combine all the elements according to the plan prepared in the previous point.

10. Preparation of the robot’s work algorithm:

Before you start writing the code, think carefully about what the robot’s algorithm
should look like. It is a good practice to create a code block diagram, which will
show all the steps of the algorithm and the transitions between each stage. A sample
algorithm in the form of a block diagram is shown in the Figure 84.

11. Preparing the code and uploading to the selected platform.

12. Testing and improving the robot:

If the robot is ready to work, its operation should be tested at the beginning. When
the robot’s work does not meet our expectations, return to step 10 and work on
improving the robot’s work algorithm.

10.4 The example of robot construction

In order to illustrate all the steps necessary to construct a robot, we will use the sunflower
project. We will start by following the steps described in the previous chapter step by
step:

1. Defining the purpose and requirements:

The robot will simulate the operation of a sunflower. So its goal will be to go
towards the light.

2. Way of getting around:

The robot does not need to move. It is enough for it to be able to rotate, so there
is no need to attach wheels, tracks, etc.

97

10 DESIGNING OF THE ROBOT

Figure 84: The example of code block diagram. Source: [26].

98

10 DESIGNING OF THE ROBOT

3. Determining the method of collecting information from the environment:

The robot needs to read the intensity of the light. You can use modules measuring
the light intensity or simply photoresistors. In this case, we choose the easier vari-
ant, i.e. photoresistors. To obtain information in which direction the light intensity
is higher, we need at least two photoresistors.

4. Defining the actuators:

The robot should rotate therefore the actuator should be used. In this case the
optimal solution will be a servo. The robot will be tilted by an appropriate angle
depending on the measurements from the photoresistor.

5. Defining the robot’s work architecture and the robot’s ”heart”:

In this case, we have a simple situation. Depending on the measurements from the
photoresistors, the robot should turn left or right. We have no way of predicting the
direction here. Therefore, the simplest architecture, i.e. reactive control, is enough.
The robot’s ”heart” can be Arduino board.

6. Defining the method of communication with the robot (optional step):

Not needed.

7. Identification of other necessary electronic components:

Photoresistors must be connected via a 10 kΩ resistors. Connections will be made
on a breadboard, so male-male wires will also be useful.

8. Identification of mechanical elements:

The robot should be similar to the real sunflower as possible. Hence, the base,
stem and petals of the flower will be indispensable. The base will be made of a
cup. The stem will be made of a piece of wood wrapped in green cloth. The flower
petals will be made of cardboard and covered with a colored fabric. Photoresistors
will be attached to the outermost petals of the flower. Then the wires from the
photoresistors will be attached to the stem and hidden under the material. The
wires will go to the base where the breadboard will be hidden. The wires will be
connected to the resistors. The servo will also be hidden in the base and the stem
will be attached to it. Arduino will also be placed in the base.

99

10 DESIGNING OF THE ROBOT

Figure 85: The exemplary construction of the robot. Source: ”Ideas for crafting” -
materials for sunflower project.

In summary, the necessary materials are: a cup, a piece of wood, cardboard and
material in green and other colors of your choice.

9. Building a robot:

An exemplary construction of the robot is shown in the Figure 85. The connection
of electronics components is shown in materials for Sunflower project: http://www.
roboscientists.eu/wp-content/uploads/2019/09/Sunflower-guidelines.pdf

10. Preparation of the robot’s work algorithm:

A example robot’s work algorithm is shown in Figure 86.

11. Preparing the code and uploading to the selected platform.

12. Testing and improving the robot:

The example of improving the robot is shown in materials for Sunflower project:
http://www.roboscientists.eu/wp-content/uploads/2019/09/Sunflower-guidelines.

pdf .

100

http://www.roboscientists.eu/wp-content/uploads/2019/09/Sunflower-guidelines.pdf
http://www.roboscientists.eu/wp-content/uploads/2019/09/Sunflower-guidelines.pdf
http://www.roboscientists.eu/wp-content/uploads/2019/09/Sunflower-guidelines.pdf
http://www.roboscientists.eu/wp-content/uploads/2019/09/Sunflower-guidelines.pdf

10 DESIGNING OF THE ROBOT

Start

Set servo to
the initial position

Read intensity of light
from photoresistors

Intensity
of light from

1st photoresistor
is higher then from
2nd photoresistor

Position of
servo is higher

than 0

Change position
of servo by -5

Do not do
anything

Position of
servo is smaller

than 180

Change position
of servo by +5

Do not do
anything

Yes No

Yes No Yes No

Figure 86: The example of robot’s work algorithm.

101

11 THE CHALLENGES

11 The challenges

The proposed 6 interdisciplinary projects are a good starting material for working with
students without robotic experience. They contain both sample solutions in Snap4Arduino
and Arduino IDE. Depending on the work intensity of the students, these projects will
last for 0.5-1 years. Depending on the level of advancement and commitment of the
group, only the basic (first) level or higher levels may be completed. Each level includes
new interesting expansions. In this chapter, I will present 10 ideas of robots that can be
created with students after completing the 6 proposed robots. Here they are:

1. Carbon monoxide detector with notification to the phone.

2. Aquarium automation.

3. Plant automation. Watering plants depending on soil moisture.

4. ECG analysis. Biomedical sensors connected to e.g. an Arduino lilypad sewn into
clothing. Information sent to the phone via Bluetooth.

5. Martian robot based on caterpillars.

6. A robot that moves like a cat.

7. A plane that is flying and remotely controlled.

8. Security system.

9. Robot going to a specific location (extension of the DIY-automobile project with
a GPS module). In this project, students will learn what GPS frames look like.
What information can we read.

10. Basic home automation. The topic can be developed in various ways. For example,
you can adjust the blinds depending on the light intensity and temperature in the
room.

Remember that the mentioned list should be a last resort. Better to motivate students
to come up with a robot proposal they would like to create. Then their commitment and
interest will be greater.

102

REFERENCES

References

[1] The Arduino official website, https://www.arduino.cc .

[2] The Snap4Arduino official website, http://snap4arduino.rocks/ .

[3] The website: https://www.theengineeringprojects.com/2018/06/

introduction-to-arduino-uno.html .

[4] The website: https://www.pinterest.com/pin/292593307022200536/ .

[5] Czes law Bobrowski, ”Fizyka - krótki kurs”, Wydawnictwo Naukowo-Techniczne,
2003.

[6] Marian Kozielski, ”Fizyka dla szkó l średnich tom 2”, Wydawnictwo B.Z.Kozielski,
1999.

[7] John Boxall, ”Arduino 65 praktycznych projektów”, Helion, 2014.

[8] Scott Fitzgerald, Michael Shiloh, ”Arduino Projects Book”, Arduino AG, 2017.

[9] The website: https://forbot.pl/ .

[10] The website: http://illinformedprojects.blogspot.com/2016/06/

sound-controlled-led-matrix.html .

[11] The website: https://www.electrical4u.com/diode-working-principle-and-types-of-diode/
.

[12] The website: https://commons.wikimedia.org/wiki/File:Alu-Elko-Polarit%

C3%A4t.png .

[13] The website: http://nextews.com/5af00fbf/ .

[14] The website: http://www.serwo.wtx.pl/index.php?dzial=&kat=&nr=32 .

[15] The website: https://botland.com.pl/ .

[16] The website: http://avrkwiat.nstrefa.pl/omnie/index.php?option=com_

content&view=article&id=244&Itemid=272 .

[17] The website: https://abc-rc.pl .

[18] The website: http://www.raspberrypirobotics.com .

[19] The website: https://learn.sparkfun.com/ .

[20] The website: https://dcubestore.com/blog/difference-between-i2c-and-spi/
.

[21] The website: https://www.circuitbasics.com/basics-uart-communication/ .

104

https://www.arduino.cc
http://snap4arduino.rocks/
https://www.theengineeringprojects.com/2018/06/introduction-to-arduino-uno.html
https://www.theengineeringprojects.com/2018/06/introduction-to-arduino-uno.html
https://www.pinterest.com/pin/292593307022200536/
https://forbot.pl/
http://illinformedprojects.blogspot.com/2016/06/sound-controlled-led-matrix.html
http://illinformedprojects.blogspot.com/2016/06/sound-controlled-led-matrix.html
https://www.electrical4u.com/diode-working-principle-and-types-of-diode/
https://commons.wikimedia.org/wiki/File:Alu-Elko-Polarit%C3%A4t.png
https://commons.wikimedia.org/wiki/File:Alu-Elko-Polarit%C3%A4t.png
http://nextews.com/5af00fbf/
http://www.serwo.wtx.pl/index.php?dzial=&kat=&nr=32
https://botland.com.pl/
http://avrkwiat.nstrefa.pl/omnie/index.php?option=com_content&view=article&id=244&Itemid=272
http://avrkwiat.nstrefa.pl/omnie/index.php?option=com_content&view=article&id=244&Itemid=272
https://abc-rc.pl
http://www.raspberrypirobotics.com
https://learn.sparkfun.com/
https://dcubestore.com/blog/difference-between-i2c-and-spi/
https://www.circuitbasics.com/basics-uart-communication/

REFERENCES

[22] S. Janwadkar, D. Bhavar and M. T. Kolte, ”Design and implementation of a GPS
based personal tracking system,” 2016 IEEE 1st International Conference on Power
Electronics, Intelligent Control and Energy Systems (ICPEICES), 2016, pp. 1-5, doi:
10.1109/ICPEICES.2016.7853253.

[23] The website: http://www.electricalidea.com/servo-motor/ .

[24] The website: https://forbot.pl/blog/kurs-elektroniki-ii-czujnik-przeszkod-sterownik-serwa-id8338
.

[25] Maja J. Mataric, ”The Robotics Primer”, MIT Press, ISBN: 9780262633543.

[26] The website: https://www.toptal.com/robotics/

programming-a-robot-an-introductory-tutorial

105

http://www.electricalidea.com/servo-motor/
https://forbot.pl/blog/kurs-elektroniki-ii-czujnik-przeszkod-sterownik-serwa-id8338
https://www.toptal.com/robotics/programming-a-robot-an-introductory-tutorial
https://www.toptal.com/robotics/programming-a-robot-an-introductory-tutorial

Author:
Angelika Tefelska (WARSAW UNIVERSITY OF TECHNOLOGY)

Reviewers:
Rene Alimisi2, Nikleia Eteokleous3, George Keliris4, Raphaela Neophytou3, Chrissa Papasarantou2,
Konstantinos Salpasaranis2, Costas Sisamos4

Partners:
2EDUMOTIVA, 3FREDERICK UNIVERSITY, 4ENGINO.NET LTD

Declaration
This report has been prepared in the context of the ROBOSCIENTISTS project. Where
other published and unpublished source materials have been used, these have been ac-
knowledged.

Copyright
c© Copyright 2018 - 2021 the Roboscientists Consortium

All rights reserved.

This document is licensed to the public under a Creative Commons Attribution- Noncommercials-
ShareAlike 4.0 International License.

Funding Disclaimer
This project has been funded with support from the European Commission. This com-
munication reflects the views only of the author, and the Commission cannot be held
responsible for any use which may be made of the information contained therein.

	Arduino Board
	Programming Software
	Snap4Arduino
	Arduino IDE

	Electronic circuit design framework
	TinkerCad Circuits
	Fritzing

	Introduction to electricity
	Basics concepts of electricity
	Basic elements
	Connecting the elements

	The digital and analog signals
	Digital signal
	PWM
	Analog signal

	Sensors
	Basic sensors
	The advanced sensors
	Serial Peripheral Interface (SPI)
	Inter-Integrated Circuit (I2C)
	UART
	1-wire

	Actuators
	Servo
	Motor

	Interrupts
	Wireless communication
	Radio communication
	Bluetooth
	RFID

	Designing of the robot
	Definition of a robot
	How does the robot work?
	How to start building a robot?
	The example of robot construction

	The challenges

