

The DIY automobile project

Project description and guidelines for teachers for circuit making and programming

Content
General Approach .. 3

About the DIY Automobile project .. 3

Guidelines for circuit making ... 5

L298n DC motor driver module: ports and pins diagram and analysis 6

Part One: Power supply circuit .. 6

Part Two: DC gear motors to DC motor driver circuit ... 9

Part Three: Shield circuit making process ... 10

Guidelines for DIY automobile Programming.. 11

Level 1: A DIY automobile that moves forwards, left, right and backwards 11

Toward a block-based programming solution with mBlock .. 11

Level 2: A DIY automobile that detects and avoids obstacles ... 18

Adding the Ultrasonic sensor to the circuit ... 18

Toward a block-based programming solution with mBlock .. 18

Level 3: A DIY automobile that moves on different angles and/or geometrical shapes 21

Toward a block-based programming solution with mBlock .. 21

Level 4: Controlling remotely the DIY automobile (optional) .. 25

Appendix .. 26

1. Details for EnA and EnB pins ... 26

2. The DIY automobile moves forward and turns right for 90° (vertical angle): Using Sprites

to introduce the concept of angular turning ... 26

3. The DIY is moving on a square: Using sprites to introduce the concept 27

General Approach

RoboScientists aims at engaging secondary school students in robotic artefact construction

through interdisciplinary in nature projects. The set of the projects (that are going to be

carried out) offer students opportunities to explore different aspects of the field of Science,

Technology, Engineering, Arts and Maths. Crafting/ handcrafting is a pivotal point in all the

projects. Through the crafting process (highly interwoven in the robotic artefact construction)

it is likely that the students will explore a number of engineering and design concepts,

confront challenges and consider multiple solutions in order to achieve the results that they

want.

About the DIY Automobile project

This project revolves around the creation of a robotic artefact that can freely move around

space. For this reason, this artefact will be called automobile. Apart from moving around

space, the automobile will be also able to detect and avoid obstacles, perform specific

movements, as well as being remotely controlled. The following image (Figure 1) is indicative

since their main goal is to graphically illustrate the concept of the project. In details, the basic

structure of the automobile is consisted of two wheels that are powered by two DC gear

motors, a caster that assists the mobility and the stability of the artefact, a driver for the

motors as well as a Shield that expands Arduino board, facilitating the circuit making process.

Gradually, two more modules are added to the Automobile, namely the Ultrasonic sensor

which will allow the artefact to detect obstacles, and the Bluetooth module that will facilitate

the remote controlling operation. All the aforementioned components should be firmly

assembled in a robust structure, highlighting the advanced needs as far as crafting is

concerned, while reflecting upon engineering concepts and issues. Alternative scenarios as far

as power supply is concerned are implemented, raising awareness and questions relevant to

ecology and ecological energy solutions.

In general, the project is related to emerging issues in regards to engineering and ecology and

consequently brings up issues related to environmentally friendly solutions, innovation and

engineering, as well as environmental policies, citizen engagement and smart cities (i.e.

creating solar cars, creating remote controlled devices that can reach areas of low accessibility

etc.). Also, it is related to alternative learning methodologies that tend to engage students

through rather playful, but highly interrelated to physics and mathematics, scenarios and

procedures (i.e. finding ways to instruct automobile to move on specific shapes, angles etc.).

When developing the designing and setting up the project, it is important to have in mind the

presentations provided and discussions that took place during the training sessions. It is

recommended to the educators that for a project to be delivered it is important to: employ

the “makeology approach”, work in teams, encourage experimentation, involves crafting and

coding, apply the Engineering design process is employed, encourage sharing, employ the

STEAM approach, design and develop robotics models and artefacts, use various tool,

equipment and materials, involve students as makers.

Figure 1: Images of a DIY Automobile - the DIY Automobile can take several forms based on students’ imagination
and preferences.

Guidelines for circuit making

The DIY Automobile is an advanced project and therefore there are significant differences

compared to previous projects as far as the circuit making are concerned. Unlike previous

projects, in DIY Automobile there is a need of an extra/special module through which the DC

gear motors can be powered and controlled. This module is called DC motor driver. There are

different types of motor drivers but, for the needs of this project, the L298n DC motor driver

is used/implemented. Another extra module that is introduced in the present project is the

Arduino Sensor Shield V5. As it has already been mentioned (i.e. in guidelines for assembling

the DIY Automobile1), the Shield is an expansion that facilitates the circuit making process

since it provides an easier way to connect sensors, motors and servos, by expanding the digital

and analog input pins of Arduino board with Power (V) and Ground (GND), while providing

separate PWM pins. Therefore, the need of a breadboard is eliminated.

The cabling and circuit making process is divided in three parts:

a. the first one concerns the power supply,

b. the second one is about the connection of DC gear motors to the DC motor driver module,

while

c. the third one depicts the way that DC motor driver is connected to the Shield.

1 http://edumotiva.eu/edumotiva/wp-content/uploads/2021/03/Guidelines-for-assembling-the-DIY-
automobile.pdf

http://edumotiva.eu/edumotiva/wp-content/uploads/2021/03/Guidelines-for-assembling-the-DIY-automobile.pdf
http://edumotiva.eu/edumotiva/wp-content/uploads/2021/03/Guidelines-for-assembling-the-DIY-automobile.pdf

L298n DC motor driver module: ports and pins diagram and analysis

The following diagram (Figure 2) and description briefly present the use of motor driver’s

embedded ports and pins

Figure 2: The L298n motor driver’s ports and pins

Ports 1, 2, 3 and 4 (OUT 1, OUT 2, OUT 4 and OUT 3 respectively) provide connection to the

DC gear motors. Normally, ports 1 and 4 are for power (+), while 2 and 3 for ground (-).

Ports 5, 6 and 7 are for power supply. In particular, port 5 provides 12V, port 7 5V while port

6 provides ground to the circuit.

Pins 8 to 13 are for connecting motor driver to Arduino/Shield. Pins 8 (EnA) and 13 (EnB) are

respectively for DC gear motor A and B, and should be connected to PWM pins. These pins are

used to control motors’ speed (see appendix 1. for details). Pins 9 (IN1),10 (IN2), 11 (IN3) and

12 (IN4) are respectively for DC gear motor A and DC gear motor B, and should be connected

to digital pins. Through high and/or low signals, these ports are responsible for controlling

motors’ spinning direction. When one of them is HIGH and the other is LOW the corresponding

motor will spin. If both are set to LOW then the motor stops.

Part One: Power supply circuit

The following diagram (Figure 3) presents the circuit for providing power supply to the L298n

DC motor driver. Connect the 5V (1.) of Shield to the 12V (3.) of motor driver. Then connect

the Shield’s ground (2.) to motor’s driver ground (4.). Finally, create a close circuit by

connecting the 12V (3.) of motor driver to the 5V (5.).

Figure 3: Circuit for providing power to DC motor driver.

Since we want – at some point – for our Automobile to be independent from our computer,

we need to provide an extra source of power. As has already been mentioned (i.e. Guidelines

for Assembling the DIY Automobile2), there are different options on the power source that will

be supplied. In case you are using a solar bank or a battery holder with a barrel-jack connector,

you just need to connect it to Arduino’s power supply port. In case you want to use a battery

holder with free cables and an on-off switch you need to follow the instructions illustrated on

the diagram depicted in Figure 5.

Specifically, connect the ground of the battery holder (6.) to Shield’s ground (2.). Then connect

the 5V (7.) of the battery holder to Shield’s 5V (1.) through the two pins (8., 9.) of the switch.

For this last step, you will probably need a wire stripper or a cutter and a soldering iron or a

hot glue gun (Figure 4).

2 http://edumotiva.eu/edumotiva/wp-content/uploads/2021/03/Guidelines-for-assembling-the-DIY-
automobile.pdf

Figure 4: a. Revealing the wire of the cable using a wire stripper or a cutter; b. Folding the wire to the one pin of the
switch; c. Gluing the wire by using hot glue gun; d. Gluing another wire that will connect the second pin of the switch
to Shield’s 5V

Figure 5: Circuit for providing power by using a 4 AA battery holder and a switch

Part Two: DC gear motors to DC motor driver circuit

The following diagram (Figure 6) - which is complementary to the one presented in Figure 3 -

depicts the way that the DC gear motors are connected to the L298n DC motor driver.

Figure 6: Circuit for connecting the DC gear motors to the L298n DC motor driver

Each DC gear motor has two small pins/joints through which it can be connected to the motor

driver. Normally, there is no indication for which should be connected to power and which to

ground. However, for the needs of the diagram the joints that should be connected to power

are colored in red, and those that should be connected to ground, in black. Therefore, connect

the pins for power to OUT1 (7.) and OUT3 (9.), and the pins for ground to OUT2 (6.) and OUT4

(8.). If no wires are already attached to the DC gear motors, then you will also need four wires

(or M-M jumpers) as well as soldering iron or hot glue gun, to attach them. In case that no

wires are attached to the gears, keep in mind to symmetrically connect the wires (i.e. if you

choose to connect Motor’s A upper pin to power, you should also connect Motor’s B upper

pin to the corresponding power pin). If two wires are already attached to your DC gear motor,

simply follow the directions of the aforementioned diagram.

Part Three: Shield circuit making process

The following diagram3 (Figure 7) indicates how the DC motor driver can be connected to

Shield. Connect the EnA (1.) and EnB (4.) pins to two PWM pins (pin 5 and pin 11 in the

example) by using two F-F jumpers. Then, connect IN1 (2.), IN2 (3.), IN3 (5.) and IN (6.) to any

digital pin you wish (pins 6, 7, 12 and 13 in the example) by using four F-F jumpers. EnA, IN1

and IN2 pins will control the way that DC gear motor A is moving, while EnB, IN3 and IN4 will

control DC gear motor B.

Figure 7: Circuit for connecting Arduino Sensor Shield to DC motor driver.

3 For reasons of readability, the circuit of power supply (Figure 3) is not depicted in the present diagram.

Guidelines for DIY automobile Programming

Level 1: A DIY automobile that moves forwards, left, right and backwards

Toward a block-based programming solution with mBlock4

At this level, the students should be encouraged to breath some life to DIY automobile through

the implementation of programming. For the needs of this project, the mBlock software – a

similar to Snap4Arduino block-based programming environment – will be used. Therefore,

through the implementation of the appropriate block-commands the DIY automobile will be

instructed/scripted to move forwards, backwards, left and/or right.

Firstly, in the “Devices” menu of mBlock we are adding Arduino extension, by choosing the

Arduino Uno device from the pop-up “Device Library” menu (Figure 8). The process of

connecting Arduino board to mBlock is rather straightforward. Therefore, and unlike

Snap4Arduino, there is no need to use Arduino IDE as an intermediate software, in order to

upload to Arduino board a Firmata file or any other extra library.

The blocks that appear below will be needed for assembling your scripts: The yellow blocks

are from the Events palette. The blue blocks (Pin) control the Arduino Input/Output Pins. The

pink blocks (My Blocks) and specifically the “Make a Block” command, enable you to define

your own block of code. Like in the majority of block-based programming environments, a

script in mBlock is assembled by dragging blocks from a palette and dropping them into the

scripting area (exactly like in Snap4Arduino).

4 https://www.mblock.cc/en-us/

This is an mBlock extension that imports Arduino

board block-commands palette, while allowing the

connection of the board to the software. You can

connect the device directly to the computer by

using a USB data cable. The connect button

achieves the communication with the Arduino

board.

This is an Arduino extension Event block that

executes the subsequent script when Arduino

board starts up.

This block sets the output of the selected PWM pin

to the specified value.

PWM signals can be used to control the speed of DC

motors. Pins 3, 5, 6, 9, 10, and 11 of Arduino Uno

can be used as PWM output. The range of values

varies from 0 to 255, where 0 indicates the duty

cycle of 0%, and 255 the duty cycle of 100%

https://www.mblock.cc/en-us/
https://www.mblock.cc/en-us/

Figure 8: “Device Library” pop-up menu (selection of the corresponding Arduino board)

Sets the output of the selected digital pin to low

(false) or high (true) level.

Click on Make a Block command to create a

procedure that contains a number of consecutive

commands (i.e. Move Forward).

Drag the needed function blocks and assemble

them under the hat block “define()” to set a new

procedure (i.e. all the needed functions to make

your Automobile move forward).

Use the created procedure (i.e Move Forward) into

the main code, under the Event hat block. When

the procedure runs, mBlock will run the blocks

below the corresponding Define block.

Programming DC Gear Motor A (Left Motor):

Through this block, a number of
consecutive commands are assigned to
the “Left Motor Forward” procedure,
instructing the DC Gear Motor A to
move forward (conventional direction).

Through this block, a number of
consecutive commands are assigned to
the “Left Motor Backward” procedure,
instructing the DC Gear Motor A to
move backward (conventional
direction).

Through this block, a number of consecutive
commands are assigned to the “Left Motor
OFF” procedure, instructing the DC Gear
Motor A to stop.

The PWN Pin (5 in the example) corresponds
to the ENA pin of L298N motor driver that
controls motor’s speed (in the value range
 0-255). The IN1 and IN2 pins (6 and 7,
respectively, in the example) of L298N motor
driver) control the spinning direction of the
motor A.

When one of the pins is set to HIGH and the
other to LOW, the motor will spin. If both of
them
(pins 6 and 7 in the example) are set to equal
value (Low/Low or High/High) then the motor
stops.

Programming DC Gear Motor B (Right Motor):

The PWM Pin (pin 11 in the example)
corresponds to the ENB pin of L298N motor
driver that controls motor speed (in the value
range 0-255). The IN3 and IN4 pins (12 and 13
respectively, in the example) of L298N motor
driver) control the spinning direction of the
motor.

Through this block, a number of
consecutive commands are assigned to
the “Right Motor Forward” procedure,
instructing the DC Gear Motor B to
move forward (conventional direction).

Tips:
Encourage your students to freely experiment with the values included in the aforementioned

scripts or/and use a table to record their observations

EnA (pin 5) IN1 (pin 6) IN2 (pin 7) Motor A status

200 High Low Motor A is turning forwards

200 Low Low Motor A is stopped

…. …. …. ….

This script allows you to check Left’s Motor

mobility. Initially, (when Arduino starts up) the Left

Motor is moving forward continuously. After a

second the spinning direction changes to

backwards, and after that it stops for 1 sec.

Through this block, a number of
consecutive commands are assigned to
the “Right Motor Backward” procedure,
instructing the DC Gear Motor B to
move backward (conventional
direction).

When one of the pins is set to HIGH and the
other to LOW, the motor will spin. If both of
them (pins 12 and 13 in the example) are set
to equal value (Low/Low or High/High) then
the motor stops.

Tips:
Encourage your students to freely experiment with the values included in the aforementioned scripts

or/and use a table to record their observations

EnB (pin 11) IN3 (pin 12) IN4 (pin 13) Motor B status

200 High Low Motor B is turning forwards

200 Low Low Motor B is stopped

…. …. …. ….

This script allows you to check Right’s Motor

mobility. Initially, (when Arduino starts up) the

Right Motor is moving forward continuously. After a

second the spinning direction changes to

backwards, and after that it stops for 1 sec.

Define both Motors functionality:

The aforementioned scripts are suggested as a familiarization stage with the functionality of
DC motors, and as a preparation step toward the main goal of the present level. Through the
next steps/scripts, the students should be encouraged to test how the automobile respond
when both motors are set in motion.

A number of consecutive commands are assigned
to “Motors Forward” procedure, instructing the
DIY automobile to move forwards (conventional
direction). An alternative and simplified approach
is depicted below.

A number of consecutive commands are assigned
to “Motors Backward” procedure, instructing the
DIY automobile to move backwards (conventional
direction). An alternative and simplified approach
is depicted below.

A number of consecutive commands are assigned
to “Motors Backward” procedure, instructing the
DIY automobile to stop. An alternative and
simplified approach is depicted below.

Moving the DIY automobile Forwards, Backwards, on the Right and on the Left:

Through the previous scripts, the automobile was able to move forwards, backwards, or stop.
This is a major step towards the scope of the present level. Next, the students should be
encouraged to combine all the aforementioned functionalities and observe how they can
affect the mobility of the robotic artefact.

Questions to raise in the class:
• How could you make the automobile move forward for longer time?
• How does the value of the speed argument affect DIY automobile’s movement?

• Does the type of surfaces (table, floor etc.) affects the distance that the automobile covers
when the same value of speed is applied?

• What will happen to DIY’s mobility if you assemble a script that includes the “Move
Forward” and “turn right” block commands?

Through this block, a number of consecutive
commands are assigned to the “turn left”
procedure, instructing the DIY automobile to turn
left (pivot).

Through this block, a number of consecutive
commands are assigned to the “turn right”
procedure, instructing the DIY automobile to turn
right (pivot).

This script allows you to set in motion both Motors.

Initially, (when Arduino starts up) both Motors are

moving Forward for 1 second. Then, their spinning

direction changes to backwards and stops for 1 sec.

Level 2: A DIY automobile that detects and avoids obstacles

At this level, the students should be encouraged to enhance the abilities of the DIY automobile

by adding and programming the Ultrasound Sensor module. Therefore, through the

implementation of the appropriate block-commands the DIY automobile will be

instructed/scripted to detect and avoid obstacles.

Adding the Ultrasonic sensor to the circuit

The following diagram (Figure 9) illustrates the way that the Ultrasound sensor is connected

to the Shield. For reasons of readability, the diagram does not illustrate all the full circuit. In

particular, the Vcc (7.) and Ground (10.) pins are respectively connected to a 5V and a Ground

pin of the shield (pin 8 in the example). The Trigger pin (8.) is connected to a PWM pin (pin 9

in the example) and the Echo (9.) to one of digital pins (pin 8 in the example)5.

Figure 9: Circuit for connecting the Ultrasound sensor to the Shield

Toward a block-based programming solution with mBlock

The blocks that appear below will be needed for assembling your scripts: The yellow blocks

are from the Events palette. The orange blocks are related to control of the program. The blue

blocks (Pin) control the Arduino Input/Output Pins. The pink blocks (My Blocks) and

specifically the “Make a Block” command, enable you to define your own block of code. The

light blue (Sensor) blocks control the Arduino sensors, like ultrasound sensor. The green blocks

are responsible for mathematical operations execution. The dark orange set of blocks

concerns the variables creation. Like in the majority of block-based programming

environments, a script in mBlock is assembled by dragging blocks from a palette and dropping

them into the scripting area (exactly like in Snap4Arduino).

5 Unlike Snap4Arduino, in mBlock there is no restrain on which pins you should choose for connecting
the trigger and the echo pins.

Click on Make a Variable command to create

a variable that contains the ultrasound

sensor’s distance value.

This block comes from the Variables palette

and sets the variable ‘distance’ to a specific

value. This value can be inserted manually or

can be linked to the values received from

specific sensors (i.e. an ultrasound sensor).

This block comes from the

Sensor palette and defines

where the trigger and echo

pins of Ultrasound sensor are

connected. The return value

of the block is the ‘distance’

of the obstacle in cm.

This block comes from the Operators palette

and executes the subsequent script if the

value of the specified parameter (i.e distance)

is smaller than the manually specified value

(distance of 10cm in the example).

This block comes from the Operators palette

and rounds the number to the nearest integer.

The DIY automobile avoids obstacles:

This script allows the DIY

automobile to detect and

avoid obstacles. When

Arduino starts up, the value

of the distance (which is

assigned to the values

received by the Ultrasound

sensor) is repeatedly

compared to a user defined

value (i.e. 10). Therefore, if

the value of the distance is

smaller than 10 then, the DIY

automobile is moving

backwards. Otherwise, the

automobile is moving

forwards.

This is an alternative script

that allows the automobile

to detect and avoid

obstacles. When Arduino

starts up, the value of the

distance (which is assigned

to the values received by the

Ultrasound sensor) is

repeatedly compared with a

user defined value (i.e. 10). If

the value of the distance is

smaller than 10, then the DIY

automobile is initially

turning right for 0.5 sec and

then is moving backwards.

Otherwise it is moving

forwards.

Questions to raise in the class:
• What will happened if you change the value of the distance (i.e. from 10 to 20)?
• What will happened if you change the duration between “turn right” and “Motors Backward”

blocks?

Level 3: A DIY automobile that moves on different angles and/or geometrical

shapes

Toward a block-based programming solution with mBlock

At this level, the students should be encouraged to program the DIY automobile moving on

different angles and/or geometrical shapes (like square, triangle).

Tip: You can sketch the shapes on a paper or on the floor, by using a tape, in order to make

the task visual perceptible.

The blocks that appear below will be needed for assembling your scripts: The yellow blocks

are from the Events palette. The orange blocks are related to control of the program. The blue

blocks (Pin) control the Arduino Input/Output Pins. The pink blocks (My Blocks) and

specifically the “Make a Block” command, enable you to define your own block of code. The

green blocks are responsible for mathematical operations execution. The dark orange set of

blocks concerns the variables creation.

This is a repeat loop from the Control menu. The

commands/blocks that will be placed in the

“repeat construct” are repeated based on a

defined value of times.

A number of consecutive commands are assigned
to “spin left” procedure, instructing the DIY
automobile to make a rather quick turn on the
left, by setting the right motor to move forward
and the left to move backwards.

A number of consecutive commands are assigned
to “spin right” procedure, instructing the DIY
automobile to make a rather quick turn on the
right, by setting the left motor to move forwards
and the right to move backwards.

The DIY automobile moves forward and turns right for 900 (vertical angle):

Until now, we have managed to control the ways that our automobile can move forwards and
backwards. We have also managed to make our automobile turn right or left, but – since the
DC motors do not support the programming parameter of angle – we still haven’t been able
to control the angle of turning. However, recalling the second script that was introduced in
Level 2, we can realize that we managed to make our automobile to change the angle of its
direction before it moved backwards, by including in the script the “turn right” block of
commands. With this as a solid base, the students should be encouraged to come up with
solutions on how they could control this directional change in order to make their automobile
move in specific angles. Therefore, they are encouraged to experiment with the parameter of
time and see how it can affect the results of their script.

Note: An alternative way of introducing the concept of angular turning is by using the sprites
of mBlock. For more details on this approach, please check the appendix 2.

Time (sec) 0.3 0.5 0.8 1.0

Angle (degrees)

This script allows the automobile to take a turn. When

Arduino starts up, the automobile waits for 2 sec (in order

to prepare the status of its position). Then it is moving

forward for 1 sec. After that it turns right for 0.5 sec,

making a pivotal turn and finally it is moving forward, again

for 1 sec.

• How many degrees did the automobile turn when
you set the waiting duration to 0.5 sec?

• What will happen if you change the value of the
time argument to 0.3 sec?

• Can you find the optimum duration in order to
succeed a 900 pivotal turn?

• Is the result affected by different surfaces (i.e. floor,
table etc.)?

Tip: Try to use a tape to mark the angle of pivotal turning.
You can also create a table and note down your
observations.

Questions to raise in the class:
• How does the DIY automobile behave on different surfaces (i.e. table, floor etc)?

• Can you make the DIY automobile turn for 900 degrees using the blocks for spinning (turn
quickly) Right and/or Left?

The DIY automobile moves on square:

Now, let’s try to instruct our automobile to move in such a way that will abstractly inscribe a

square shape (meaning a shape with four equal sides and four equal angles of 90 degrees

each). As it was previously mentioned, since the DC motors do not support the parameter of

angular turn, the parameter of time together with the block commands of turn are suggested

to be implemented instead.

Note: An alternative way of introducing the concept of square shaping is by using the sprites
of mBlock. For more details on this approach, please check the appendix 3.

Under certain conditions, this script allows the DIY

automobile to abstractly inscribe a square. To do that,

the automobile should move on a constant speed (i.e.

200) for a fixed amount of time (i.e. 1 sec) and make a

pivotal turn of 90 degrees. This procedure should be

repeated for four time. When Arduino starts up, the

automobile waits for 2 sec (in order to prepare the

status of its position). Then, both motors are moving

forward for 1 sec, and after that only the right one

turns for some seconds (insert the value that you

found from the previous task i.e. through the script

that allows DIY to take a turn), in order to make the

pivotal turn of 90 degrees. This procedure is repeated

for 4 consecutive times and after that both Motors

stop.

Questions to raise in the class:

• What will happened if you were using the turn left block of commands instead of the
turn right block?

• Can you make the DIY automobile to abstractly inscribe a square by using blocks for
spinning (turn quickly) (i.e. blocks spin right and spin left)? How does the value of the
corresponding wait block is affected?

Encourage your students to experiment with more shapes. How could they instruct the

automobile to move in a triangle shape? Does the following script can make the automobile

to abstractly inscribe a triangle? How many degrees should be the turning angle?

Level 4: Controlling remotely the DIY automobile (optional)

You can find a detailed presentation of level 4 here: http://edumotiva.eu/edumotiva/wp-

content/uploads/2021/03/Automobile_level4.pdf

http://edumotiva.eu/edumotiva/wp-content/uploads/2021/03/Automobile_level4.pdf
http://edumotiva.eu/edumotiva/wp-content/uploads/2021/03/Automobile_level4.pdf

Appendix

1. Details for EnA and EnB pins

Each of the aforementioned pins, is covered with a jumper (Figure 10, left). Remove them, by

using a tweezers (Figure 10, Center), in case you want to use the EnA and EnB pins so as to

control the speed of your motors.

When you are removing the jumper, two pins are revealed. To control the speed of the motor,

use the one that is collinear to IN pins, as it is indicated in the right image of Figure 10.

Please, do not remove these jumpers in case you are not interested to control the speed of

your motors.

Figure 10: Uncovering the EnB pins for controlling speed of Motor B; Left: Jumper that covers the EnB pin; Center:
Removing the jumper with a tweezers; Right: Two pins are revealed. Connect the one that is indicated with the
red arrow, to one of PWM pins of your Arduino or your Shield

2. The DIY automobile moves forward and turns right for 90° (vertical angle):

Using Sprites to introduce the concept of angular turning

In this step, the concept of angular turning is

introduced through the use of mBlocks sprite.

For this purpose, the move and the turn

blocks from Motion blocks (blue blocks) are

assembled in order to make the sprite (an

image of the DIY in the example) to move for

100 steps, make a pivotal turn of 90 degrees

and move again for 100 steps. The present

script can be the first step for the

construction of a squared shape.

The aforementioned paradigm is suggested as a familiarization (intermediate) stage towards

the concept of angular turning.

3. The DIY is moving on a square: Using sprites to introduce the concept

Let’s return to the sprites programming menu and try to make the sprite inscribe a square
shape (meaning a shape with four equal sides and four equal angles of 90 degrees each).
Again, for this purpose, the move and turn blocks from Motion blocks (blue blocks) are
implemented.

The DIY automobile moves on triangle:

This script helps to understand the

concept of a squared shape

construction through the

implementation of mBlock sprites

block commands. The sprite is

scripted to move for 100 and make a

pivotal turn of 90 (degrees), for four

consecutive times. You can either

choose of repeating the

aforementioned block for four

times, creating an 8-line code, or

simplify the procedure by using the

Control block “Repeat”.

This script helps to

understand the triangle

construction. For this

purpose, the instructions

move 100 and turn 120

degrees are repeated three

(3) times.

ROBOSCIENTISTS PROJECT

Motivating secondary school students towards STEM careers through robotic artefact making

Erasmus+ KA2 2018-1PL01-KA201-051129

Creators

Rene Alimisi, Chrysanthi Papasarantou, Konstantinos Salpasaranis (EDUMOTIVA)

Declaration

This report has been prepared in the context of the ROBOSCIENTISTS project. Where other

published and unpublished source materials have been used, these have been acknowledged.

Copyright

© Copyright 2018 - 2021 the Roboscientists Consortium

All rights reserved.

This document is licensed to the public under a Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International License.

Funding Disclaimer

This project has been funded with support from the European Commission. This communication

reflects the views only of the author, and the Commission cannot be held responsible for any

use which may be made of the information contained therein.

