cientists

The DIY automobile project (Level 4)

Worksheet for students

Aim: Controlling the DIY automobile remotely

What can be used to control DIY automobile remotely? Think about it and search
for information online. Write your answers below.

'e N

How Bluetooth works? Search for information online and write your answers below.

Review several scenarios, how DIY-automobile steering remotely can be build, and
choose one to demonstrate. Sketch your DIY-automobile and list the crafting materials
that you may need.

Area for sketches Bill of materials

Time for circuit making!

During this level, the DIY automobile will be remotely controlled by mobile phone
with Android system using Bluetooth technology. First, the Bluetooth module HM-06
should be connected to the Arduino Sensor Shield according to the table 1.

RXD 3
TXD 2
GND G
VCC \Y

Table 1: Connection of a HM-06 Bluetooth module with an Arduino Sensor Shield
(pinout).

Time for hands-on practice!
Let’s create the circuit using your Arduino board and the corresponding electrical
components.

Next, the RemoteXY library should be installed on your computer. Follow the in-
structions below to install the library:

1. Download the RemoteXY library from website https://remotexy.com/en/library/
2. Unzip the archive with RemoteXY library inside Arduino— libraries folder.
3. Run the Arduino IDE software.

The RemoteXY library allows to create an user interface on your mobile phone. You
can design interface by dragging and dropping different kinds of buttons from FElements
section to the virtual mobile phone on website https://remotexy.com/en/editor/ as
it is shown in figure 1. Every button has its own variable, which name can be modified in
Properties section. You can also change the color of a button and the text on a button.

https://remotexy.com/en/library/
https://remotexy.com/en/editor/

:uid o3 deus

jeg _

:a)f3s 1apiog

v::ox_

radfy melg

“rabuely) _H_

M

uonded

m

[(S3|NJ ++2) SWEU 3|qELEA

“*abueyd I

110[0D)
jJusWa|g
MIIA
2eLI2]Ul 3|NPOJ
uoneanbyuom

+ 1aloud may

uone10d3(]
uoledIpu|
Pl2y 3P3
J0j02 g9y yznshof J2pIs
122125 yaams uonng
s|oJjuo)

Figure 1: The RemoteXY website editor.

Time for programming!
Connect your Arduino to USB.

When you finish the design of the user interface, click on Get source code button.
Then, you will see the source code of your user interface. This code will be integrated
with your code from level 1. If you write code using mBlock, please copy the solution
from Arduino IDE from attached document.

First, you can see the user interface configuration between RemoteXY include library
and FEND RemoteXY include comments in the source code. Copy this part of code to
your code from level 1 at the beginning (after including libraries). The SoftwareSerial
library is included twice, therefore remove one of them, e.g.:

#include <Arduino.h>
#include <Wire.h>

H#inelude<SeoftwareSerial-h> Remove the repeating library

[T iy
// RemoteXY include library //

[PITTITTTEETT LT T DT

#define REMOTEXY MODE_SOFTSERIAL
#include <SoftwareSerial .h>

#include <RemoteXY.h>

// RemoteXY connection settings
#define REMOTEXY SERIAL RX 2
#define REMOTEXY_SERIAL.TX 3
#define REMOTEXY_SERIAL_SPEED 9600

// RemoteXY configurate
#pragma pack(push, 1)
uint8_t RemoteXY_CONF [| =

{ 255,4,0,0,0,43,0,10,13,0,
1,0,43,11,12,12,2,31,87,0,
1,0,43,27,12,12,2,31,83,0,
1,0,23,27,12,12,2,31,65,0,
1,0,63,27,12,12,2,31,68,0 };

// this structure defines all the variables and events of your control interface
struct {

// input variables

uint8_t W; // =1 if button pressed, else =0
uint8_t S; // =1 if button pressed, else =0
uint8_t A; // =1 if button pressed, else =0
uint8_t D; // =1 if button pressed, else =0

// other variable
uint8_t connect_flag; // =1 if wire connected, else =0

} RemoteXY;
#pragma pack (pop)

[T LT T
// END RemoteXY include //

[T T

void Motors_Forward ()

{
Left _Motor_Forward ();
Right_Motor_Forward ();

}

void Motors_Backward ()

Left_Motor_Backward ();
Right _Motor_Backward ();
}
void Left_-Motor_Forward ()
{
analogWrite (5,200);
digitalWrite (6,1);
digitalWrite (7,0);
}

void Left_Motor_-Backward ()

analogWrite (5,200);

digitalWrite (6,0);

digitalWrite (7,1);
}

void Left_motor_ OFF ()

analogWrite (5,0)

digitalWrite (6

digitalWrite (7
}

void Right_Motor_Forward ()

{
analogWrite (11,200);
digitalWrite (12,1);
digitalWrite (13,0);

}

void Right_-Motor_Backward ()

{
analogWrite (11,200);
digitalWrite (12,0);
digitalWrite (13 ,1);

}

,0)5
30)7

void Right_-Motor_OFF ()
{
analogWrite (11,0);
digitalWrite (12,0);
digitalWrite (13,0);
}

void Motors_ OFF ()

{
Left_motor _OFF ();
Right_ Motor OFF ();

}

void turn_left ()

{
Right_Motor_Forward ();
Left_-motor_OFF ();

}

void turn_right ()

{
Left _Motor_Forward ();
Right_Motor_OFF ();

}

void _delay (float seconds)

{
long endTime = millis () + seconds * 1000;
while (millis () < endTime) _loop ();

}

void setup ()

{

pinMode (5 ,OUTPUT) ;

pinMode (6 ,OUTPUT) ;

pinMode (7 ,OUTPUT) ;
(1
(1
(1

3

pinMode (11 ,OUTPUT) ;
pinMode (12 ,0UTPUT) ;
pinMode (13 ,0UTPUT) ;

}

void _loop ()

{

}

void loop ()

{
_delay (1);
Motors_Forward ();
_delay (1);
Motors_Backward ();
_delay (1);
Motors_OFF ();
_loop ();

Then, copy rest of the commands:
e RemoteXY_Init() to setup function. This function initializes user interface.

e RemoteXY_Handler() to loop function, which checks state of the buttons, if they
were pressed or not.

All the buttons have their own variables (see part of the source code under input
variables comment), which are equal to 1 when a button is pressed. In this case, the
variables are called W, S, A and D. The source code below checks the value of each
variable. If the button is pressed, the appropriate command runs:

void setup ()

{
pinMode (5 ,OUTPUT

()
pinMode (6 ,OUTPUT) ;
pinMode (7 ,OUTPUT) ;
pinMode (11 ,0UTPUT) ;
pinMode (12 ,0UTPUT) ;
pinMode (13 ,0UTPUT) ;

RemoteXY Init() ;

}

void _loop ()

{
}

void loop ()

{
RemoteXY _Handler() ;

if(RemoteXY.W) Motors_Forward() ;
if(RemoteXY.S) Motors_Backward() ;
if(RemoteXY.A) turn_left() ;
if(RemoteXY.D) turn_right() ;

- delay(1) ;
Motors_-OFF() ;

- loop() ;

}

e #include "name of library” - this line allows to add library header to the
source code,

e analogWrite(pin, duty cycle) - this function allows to generate the PWM
(Pulse Width Modulation) wave on chosen pin number and with chosen duty
cycle,

e digitalWrite(pin,value) - this function sets the chosen value (HIGH and LOW
or 0 and 1) on digital pin,

e milis() - return the passed time after running the code in milliseconds.

Time for crafting!
Start working on the design of the DIY-automobile using the available crafting
materials.

Now, you can run your code on your DIY automobile. The last step is installation
of the RemoteXY application on your mobile phone. You can find this application in
Google Play Shop. Then pair your mobile phone with the Bluetooth module, which will
be called HC-06. The password is 1234.

Next, open the RemoteXY application on your mobile phone. Click a plus sign in
the right, top corner, choose Connect to Bluetooth device, and select the HC-06 device
as follows. Then click on added device and now you can control your DIY automobile
remotely. Enjoy!

Electrical components

The following table is an index containing all the components that need to be imple-
mented for accomplishing the present activity.

DC Motor

L298n driver

Arduino Sensor Shield

Bluetooth module HC-06

10

ROBOSCIENTISTS PROJECT

Motivating secondary school students towards STEM careers through robotic artefact making

Erasmus+ KA2 2018-1PL01-KA201-051129

Creator
Angelika Tefelska (WUT)

Declaration
This report has been prepared in the context of the ROBOSCIENTISTS project. Where
other published and unpublished source materials have been used, these have been ac-
knowledged.

Copyright
© Copyright 2018 - 2021 the Roboscientists Consortium
All rights reserved.

[eroe)

This document is licensed to the public under a Creative Commons Attribution- Noncommercials-
ShareAlike 4.0 International License.

Funding Disclaimer
This project has been funded with support from the European Commission. This com-
munication reflects the views only of the author, and the Commission cannot be held
responsible for any use which may be made of the information contained therein.

11

